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An Inf orma l Definition of Aiphard

Prof ac•

The authors and their colleagues have been experimenting with a collection of Ida.. about
programming languages for several years. Our goals includ ed determin ing the extent to which language
could support contemporary programming methodology, could aid In the construction of verifiable
programs, and , at the same time, could be a completely practical programming tool.

In the context of that exploratory spirit it seemed inappropriate to rigidly bind decisions about the
details of the language. Hence, although our explorations were carried out in a relatively uniform
notation and published under the name “Alphard , there really never was an Aiphard language. The
astute reader of our previous publications will have noted, and probably will have been frustrated by.
the fact that we felt completely tree to change the notation from paper to paper as the needs of our
exploration seemed to warrant.

With this document we are breaking with our previous strategy. We are now defining a specific
language which we expect to serve as the basis of our further research. In the future we do not
intend to altar this language In the same free manner as we have in the past. There are two reasons
for this shift in strategy: First, although we didn’t admit it, much of the language was frozen in our
heads, and the minor differences that appeared In published examples only served to confuse our
readers. Second, and far more importantly, we belIeve that the premises on which all the “data
ab~trsctlon” languages are based are untested in practice. We feel the need to gain experience
before we can proceed with any confidence to tackle the next set of exploratory questions. To gain
that experience we need to freeze, and to implement, at least some portion of the language -— and that
is what we are now doing.

Since we expect to wore in the context of the language defined here •or some time to come, the
language is extremely conservative. Our past expe rience has been that simultaneously achieving
verifIabilIty and efficiency Is possible — but delicate. Hence we have chosen to include only features
whose ImplIcatIons we fully understand. For exam ple , we have omitted features dealing with
concurrency , exceptional-condition handling, and so on. We fully appreciate that these features will be
ne.d.d In a “productIonTM version of Alphard; they are omitted here because they are still the subject
Of our research.

The present version of this report carries the word “Preliminary5 in Its title; we hope to promptly
circulate a second version of the report from which this word has been elided . Our purpose In
circulating this first version is to solicit comment We will deeply appreciate any and all critiques of
both th. Innguage and its presentation. Such comments should be sent to Bill Wuit,
Computer Science Department, CarnegIe-Mellon University, Pittsburgh, P.. 15213. 
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2 An Informal Definition of Aiphard

Chapter 1
Introduction

The Aiphard language has been designed to meet several objectives simultaneously:

To support contemporary programming methodology, and to encourage the development of
understandable and modifiable programs. Specifically, we wish to make the abstrac~Ions
used during the construction of a program explIcit in the resulting program text.

To permit formal specification of properties of a program, and to permit practical verifIcatIon
(proof) that the program satisfies these specifications.

To permit the programmer to control certain decisions that have traditionaily been preempted by
the language implementation (e.g., the representation of data structures and method of
storage allocation).

To permit the Ahphard compiler to generate compact , efficient code. With the aid of an
optimizing compiler , we oxpect to produce better code than is typically produced by
assembly language programmers.

In setting these objectives, our principal concern Is with high quahit~,, ~.ei programs -- those which are
used extensively and ave of signifIcant size and complexity. Many of these programs arise in the area
which has been called “systems ”: compilers, operating systems, and the like; such applications are
representative of our concerns although they are not our exclusive focus. Our Intended user
communIty consists of relatively experienced professionals rather than casual or student programmers.

The designers of a programming language generally make a number of philosophical decisions that
have manifold effects on the product ot their effort. We , for example, believe that “power ” or
“expressiveness ” is best achieved through mechanisms which permit the programmer to synthesIze
more complex facilities out of relatively simpler ones. Thus the composition, or structuring
mechanisms play the central role in Alphard; by contrast , for example , the collection of primitive data
types is small. The philosophical justifications for this decision are: (1) all of the familiar data types
can be built from Alphard’s primitives , (2) the basic language is much simpler without a large collection
of data types, and (3) in making the composition mechanism strong enough to define the familiar data
types, we have also made it strong enough to define many more problem-specific ones.

Perhaps nowhere are the language designers’ philosophies more evident than In those decisions
relating to the tradeoffs between expressiveness, safety , and efficiency. Aiphard, like all languages,
strives for a balance between these, but our notion of balance is colored by the intended applicatIon
area(s) and user profiles. For these applications the long term costs of maintaining and running
programs far outweigh their initial development costs. Thus we have tilted the balance In favor of
those language attributes which contribute to efficIency and maintaInabIlity, possibly at the expense of
those which facilItate rapid program construction.

We have, for exam ple , not emp hasized “ ex press Iveness ” in the sense of a large collection of
constructs -- each of which l~ “Just right” for a partIcular situation. We believe that we have,

L - .-  - - 
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however, supported expressIveness in a larger sense by encouraging program organizations which
convey Important, abstract information about the way that the program works.

Similarly, we have emphasized safety and effIciency, sometimes at the expense of brevIty or
convenience. This has led us to restrict some traditional constructs (e.g., scope and parameter rules)
and retrain from making some tempting generalizations. We are aware of many areas in which the
present design could be generalized in rather obvious ways; we hive chosen not to do so, however,
when we might compromise the programmer’s confidence in both the correctness and performance of
his program ’

1.1. Unusual Aspects of the Language

Many aspects of programming languages have become fairly stande~d In the past decade. Alphard
constructs are intentionally similar In style and meaning to the analogous constructs In other languages.
In particular, we have leaned heevily on the Algol-Pascal culture; the syntax of expressions, variable
declarations, procedures, and so on, are all derived from this culture. The following, for example, is a
fragment of a valid Alphard program and l~ obviously similar to Pascal:

begin
var x,y,z:lnt;

If x�y then Z:”Z+1 ~~;

end;
We expect that the sImilarity between the Aiphard constructs and the analogous once In other
languages will aid both the reader of this report and the programmers who use the language.

There are, however, a number of aspects of the language which difter signifIcantly from many
traditional languages. This section provi des brief notes on these aspects of Aiphard. It Is, in effect, a
list of points at which the reader should be aware that things may not be as expected.

1. Type Definitions: The programmer may define a new type through a const ruct called a form .
The form permits both the specIfIcation of the abstract properties of (objects of) the new
type and the ~mpiementation of that type In terms of pre-existing types. Type defInitions
(forms) may be p.rameterized; In particular they may accept other 

~~ 
names as

parameters. Such forms are called “generic” and define a class of types (e.g., .rray(T),
where T Is a ty pe, defines array-of ’ integer, array-of-real , array-of- set-of-integer, etc. ).

2. PrimIt lv. types : Integer , real, com plex, etc. are not primit ive ty pes In Alphard ; sImIlarly ,
structures such as arrays , records, and references (pointers) are not primit ive. All of these
familiar notions are available , however. Either they are provided as “syntactic sugar”
through some standard abbreviatIons, or else they are mad. avaIlable tO the programmer as a
part of a “ standard prelude ” — a set of standard definit ions wh ich (conce ptually ) prefaces
every program. Specifications for the standard prelude are Included as appendix
B to thu report .

We are convinced that d.cidirig what eat to includ, in a languag, design ig much hard.r than inven ting clever
new thingS to nclude.



4 An informal Defin ition of Aiphard

There are (only ) two distinguished types In Aiphard; they are distinguished In the sense that
they must be considered as part c.S the language and not as part of the standard prelude.
They are “ rawstor age ” and “boolean”. Specifications of those types end their associated
operations may be found in appendix B; Informally, however:

a. Type “ rawstorage ” : This typo corresponds to a vector of contiguous , addressable,
untyped memory “cells” of conventional computers (we shall refer Informally to a
rawstorage Unit of length one as a “cell” or a “word” but we make no a
committment to the number of bits In each such cell); bit-wise logical, shifting, and
Integer operations are defIned on cells. All other types are (ultimately)
represented in terms of objects of type rawstorage , and the definition of this type
contains the basic mechanism for associating a “higher level” type with an area of
storage. Type rawatortige is distinguished (only) because its implementatIon
Cannot be expressed in the language.

b. Type “boolean”: Objects of type boolean are primitive (unstructured), and possess
values from a set designated {true,false}. Type boolean is distinguished In the
sense that, although it can be defined in terms of type rawstorage , it is needed
for the definition of other language constructs -- e.g., the conditional statement.
The customary operetions are provided.

3. Type Checking: Most modern programming languages Contain some notion of the
“equivalence” of types and require that the types of actual parameters to procedures be
equivalent to those specified by the corresponding formal parameter definItions. The
presence of parametenized and generic type definitions In Alphard makes it advantageous to
replace the notion of equivalence by a more liberal notion of “matching”. Formal parameter
definitions specify a collection of properties which the corresponding actual parameter must
possess , specif y a collection of properties which are irrelevant, and provide a lImited facility
for relating properties of dIstinct parameters. Together these define a class of valid actual
parameter types, and provide what Is generally called “strong typing”; In particular, the
parameter specification and matching is sufficiently strong to ensure verif iability.

4. Scope Rules Aiphard’s block structure is similar to that of Algol 80: declarations appear at
the head of a block, the meaning of an identifier Is determined from its nearest enclosing
declaration, and so on. Unlike Algol, however , In Alphard the bodies of procedures and forms
do not inherit the names of variables avaIlable in enclosing blocks. The intent of these sco pe
restrictions2 Is to ensure that all effects of an action can be determined by examining the
text immediately surrounding the action itself. An additional benefit is that Alphard can be
Implemented (very efficiently) using a stack , but without the need for a dIsplay.

5. Operator Overloading: The meaning of the usual infix operators (e.g., “.“. “““ . etc.) may be
extended to programmer-defined data types. The symbols for, the associatlvlty of, and the
precedence of these operators are fixed by the language (see appendix C).

2 A ~ar tc u lar  consequence of tf’e scope restr’ctioris -- together with companion restrictions on overlapoii’g actual
p.ran,et.rs arid selectors —- is to prevent unmienoed aiiasing . Th.t is, they ensure that within a given scoos
th.re is at most one name for a given storage ceii.

L - —~~~ - .---- ~ - -~ -~~~~~
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5. Selectors: The programmer may define the representation of a data structure by means of a
selector. Intu itIve ly, a selector defInes an algorithm for naming data , j ust as a procedure or
function defines an algorithm for computIng va’~~s. A selector may be thought of as a
procedure that returns a pointer (reference, .ddress) to an element of a data structure; the
syntax for defining selectors Is therefore similar to that of procedures. “Pointer” Is not,
however, a typ e in Aiphard; no variables of this type can be dec lared , and hence the “ value”
returned by a selecto r cannot be store d. The effect of this (coupled with some verIfication
requirements) is that selectors are “ safe ” ; most of the (useful) flexibilIty of general address
arithmetic is retained without introducing its corresponding dangers. In particular, it is
poss ible to define a restricted sty le of “ reference” variable completely within the language
and to ensure that this type is at least as sate as array indices In other languages.

7. Assertions: AssertIons are permitted almost everywhere and special syntax encourages
their use In appropriate places. The language In which the assertions are written, however,
is not defined by Alphard. The choice of that language is, we believe, a private matter
between the programmer and verifier.

8. iteration: Four iteration statements are provided, three of which are somewhat different
from what one might expect.

a. The do statement repeats Its body untIl th~ body Invokes an explicit exit.
b. The for statement serves a function similar to the for-step-until construct of Algol

80, brj t does so in a manner that permits the programmer to define the type of the
contiol variable, the way It is initialized and incremented, and the nature of the
test for completion of the loop. Thea. aspects of loop control are au defined In a
form (usually a specialized form called a generator).

C. The first st atement provides a special syntax for those common Puops that search
a data structure and perform one of two actions depending upon whether or not an
element with a specified property is found.

The fourth iteration construct is the familiar while statement.

9. Sugaring: A number of familiar notions such as records and enumerated types are not
primitiv e notions in Aiphard. They are provided, however, as abbreviations for the more basic
notions from which they are formed3

1.2. Styl. and Convent ions of the Report

This report Is a precIse but informal definition of Aiphard ; It is neither a primer nor a completely
rigorous formal defInition. It Is Intend ed, however, to be the reference for users, Impiemerttors, and
verifiers. To that end we have attempted to be as precise as our human ilmitations and the vagaries of
English permit. We have consciously adopted the style and tone of the Algol 60 report, which we
believe remains the exemplar language definition.

The syntactic definItion of the languag. uses conventional BPIF with the following additions and
Conventions:

Pun intended!

_ _I. — — —---- - —



8 An informal D•fiaition of Aiphard

1. Key word s (reserved words) are denoted by underlInIng.

2. Metasymbols are denoted by lower-case letters enclosed in angular brackets , e.g., “(stmt)”.

3. The symbols ( and ) are mete-brackets and are used to group constructs in the mete-
notation.

4. Three superscript characters, possibly in combination with a subscrIpt character , are used to
denote the repeti tion of a construct (or a group of constructs enclosed in {)). In particular:

“““ denotes “zero or more repetitions of”
“+“ denotes “one or more repetitions of”
“C” denotes “precisely zero or one instance of” .

Since It is often convenient to denote lists of things that are separated by some single
punctuation mark , we denote this by placing the punctuation mark dIrectly below the
repetItion character. Thus.
<vvv> ::— <a> ( <b> I

* 
defines a <vvv> to be an a> followed by either a <b> or a <c .<Xxx> ::— <a.

* 
defines an <xxx> to be a slquence of zero or nor. a’s.

<yyy> ::— <a, (b>,
defines a <yyy> to be an <a, followed by zero or more <b>s separated by
commas.

<zzz> ::~ (<a>
defines a <zzz> to be a sequarica of one or more things separated by
s.micoions -- where th. ihirigs” may be either <a>s or <b>s.

<uuu> ::— <a,~ <b>
defines <uuu> to be either “<a’<b> or Simply <b>

The semantics of the language are described in English. Proot rules for some constructs are provided
in appendix E.

Certain portions of this report describe processes in terms of extra variable creations, text
replacements (copying), or other actIons. These are Informal expositions and at all tImes the language
(compiler) Is required to only produce the same net semantic effect. Such expositions should beInterpreted in their Intended, helpful sense. Obscure consequences of the particular processes will not
be supported.



r

An Informal Definition of Alph.rd 7

Chapter 2
Fundan,•ntaJ Conc.pts

The followIng chapters define the syntax and semantics of Aiphard; in th is chapter we describe
certain pervasive notions that are used In the definition.

A complete Aiphard program consists of a collection of declarations and statements which are
elaborated4 to produce some desired effect. Deciarat ions define forms (which, in turn, define classes
of types ), rout ines 5 (whIch may be Invoked to evoke further elaboration ), variables , and a number of
other entities of lesser Immediate Importance. Statements define actions to be performed; they may
specIfy selective or Iterative elaboration of component statements and expressions. Of part icular
immedIate interest, because they cover the major Ideas we wish to discuss, are the notions Involved In
the elaboration of the declaration of variables and in the elaboration of routine Invocations.

The elaboration of a va riable dec iarat lon , e.g.
var x:vector(int,1 ,1 0)

begins with elaboration of the type description (vector(int,1 ,i 0)), followed by Instantiation of an
obj .ct ,jf the typ. resulting from this elaboration (instantiation Involves both allocation and
Inltl.Jlzation); finally, a binding of the name to the instantiation i~ performed.

The elaboration of a routine invocation, e.g.,
f(x ,y)

begins with the elaboration of the actual parameters (x and y), followed by matching of the nominal
typ. of the actual parameters wIth the type descriptions of the posltlonally corresponding formais; If
this matching succeeds a set of bindings 1 performed6 and the routine body is elaborated.

The words and phrases in bo ld-face above , type, object, .., are representative of the notions we
shall discuss in this Chapter. Because of mutual dependencies between the notions, however, we shall
not discuss them in precise ly the order in which they are mentioned above. We have choeen instead
an order which attempts to minimIzes the forward references.

2.1. Objects, Addresses, and Values

Intuitively an object is a generalized (and typed) storage cell, or variable; It Is used to hold the
value of some abstract data type.

We us. the word “elaboratio n” , in preference to execution”, to connote actions taken at compile time” as welt
as at “run tivne . Elaboration may be thought of as an idealized, direct execution of the textual version of the
Alphe rd pro5ram.

~ The word “ routine ” is used systemet ical ly to cover the notions of Q~~, ~~~ ~~~~ and 
~~

j.

6 At this point a result object may also be instantiated, but this is not e*seflti.l to the present discu ssion.
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An object possesses a unique (generalized) address, a type , and a value (or state). Objects may
be dynamically created and destroyed. The address and type of~an object are fixed throughout its
lifetime, but the value it possesses may be altered.

An object may be primitive, in which case its values (i.e., the values it may possess) are members of
an arbitrary set. Otherwise, the object Is composed of a sequence of one or more (previously created)
objects, celled its concrete components. The value of such an object may be taken to be the
sequence of values of Its concrete components. For the purpose of the following expositIon, If x
denotes an object, x1 denotes its ~~ component object. —

Two objects may overlap; that is, their values need not be independent. A common case, though not
the only one, is that one object wholly contains the other, as a vector contains Its elements. Two
objects that do not overlap are called Independent. Any logical dependency (i.e., overlap) between
the values of two objects is fIxed. A newly created object independent of eli previously existing
objects is called a new object.

The creation of an object is generally associated with allocation of storage for the object and
initiali zatIon of its value. The entire process is called Instantiation and the resulting object is Called
an instantiation of its type. The first step of instantiation is the elaboration (evaluation) of a type
description to yield a typ e (see section 5.6). Next the object is created. For primitive objects
this is a direct operation; otherwise it Is achieved by (recursive) Instantiation of Its concrete
components. (Note that at the moment of creation the generalized address of the object Is
determined.) After allocatIon, the Initialization procedure defined with the base type of the object Is
invoked as described in section 5.5.

Objects are destroyed by first invoicing • finishing procedure defIned with the base type of the
object (as described in section 5.5), then dc-allocating the object (for primItive objects) or
destroyIng its concrete components (for non-primitive objects).

2.2. Typ. and Type Descr iptions

Intuitively, type is that property of an object which defines its possible behaviors 7 . More formally, a
type characterizes the possible values (states) of an object and the set of operations that may be
applIed to it.

There are two explicit syntactIc manifestations of the notion of type in the language: form
declarations (which define a class of types), and type descriptions (whIch describe a class of object
types that may be bound to an identifier in declarations or formal parameter specifications).

Form declarations are defined in section 5.9. For our present purposes It is sufficient to
note that: (1) every form haS a name, (2) a form may be perameterized, and (3) the form declaration
mak es avaIlable various operations. A subset of these operations (the side-effect producing ones) Is
called the update set.

Note fl at Objects, not values , are typed. Indeed na,~ed vaiues do not exist in Aiphard — values only exist in
Obj cts . Thus, for example, we may soe s~ cntcrmsliy 0$ the “‘~elue prOduced by a procedure ”, but in tact the
proc ed ure retur ns an obiect that contains the v.iue.

—.—-_ .- -
~ 

— -.---
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Type descriptions are used In thr ee contexts: (1) In variabl, declarat Ions , where they def ine the 
—

type of an object to be instantIated, (2) in formal parameter specIfIcations, where they defl n• the
class of legal actual parameters, and (3) in routin, definitIons,, where they specify the typs of the
object returned. In addition. In both contexts type descriptions define the nominal typ. of any object
bound to a particular IdentIfier. Thus, the nominal typ, of in object Is the Informat ion about Ite type
that can be inferred by accessing the object through • particular Identifier.

The distInction drawn In the last paragraph between “ type ” and “nominal type” is an Important,
though possibly subtle , one. A “type” is associated wIth an object and determines all possible
behavIors of that object. A “nominal type” is assocIated with an Identifier which, in turn, is bound to an
object. The nominal type assocIated with an Identifier determines the posslbie behaviors that can be
caused through That Identifier. in the general case a nominal type will be “ less specif ic” than the type
of the object to which the identifier is bound. 

•

In the following sectIons we wore formally define the notions of type, type descriptIons, and nominal
type.

2.2 1 Type

A type results from the elabo ration of a type descr iptIon (see sectIon 5.6) and consists of a
base type, a (poaslb ay miMi) sequence of actual type qualifiers, and an update s.f.

A base type is a for m name; it uniquely ident ifies a class of types. For example , the base type of
“v.cfl ,$rsaI. 1,10)” Is “vector”. in the followIng, If I Is a type , Bes.(T)8 represents the base typ. of
I

An actua l ty pe qualifier Is intuitively an actual perimeter In a type description; hence It corresponds
to a formal parameter In a fore definition. It may be an object address, an object, a routIn, name, a
type, or a marker denoted i~~~~~~. lit “vectoe(reelj ,10)”, the actual type qual ifiers are “real”, “1”, and
“1 0” .

A typ. none of who se qualifiers is utik is called a lull type; a type with at least one unit qualifier Is
called a perUal type.

The update set consists of a set of routine de lgn.tors rom among those defined with the base
type; speci fi cal ly , the update set consists of those routines which may have a (visible) effect on an
Object of the ty pe. if I I. a type, Upd.te(T) denotes its update act

If I Is. type, then OuaKT) denotes tIle s.quence of actual type qualifiers of I and ~usi1(T) denotes
the ~~ element of that sequence.

ler• arid in the sequel we shall us tuncteons such as 8.se(T), Qual(I), ljodat.(k), etc. to explain semantic
aspects of the langua$e; these t unctioris are only pwt Of the semantic exposition, noi constructs in the lan us~e
tse4f.

~ The marker ~~~~ which is to be read “unknOwn’, elnotas situations in which the corresponding (g formal is
riot considered a pert of the nominal type. 
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2.2.2 Type Descriptions

A type description is a syntactic construct whIch describes a class of types and may designate
restricted aCCeSS to objects of those types. A type descriptIon consists of a base type, a sequence
of formal type qualifiers and en update set. The elaboratIon of a type description yields a type or a
nominal type.

A base type Is (as above) a form name.

A formal type qualifier is either the marker unit or else a description of an object address, an object,
a routine, or a type. When used to specify a formal parameter, a form al typo qualIf ier may be an
identIfIer preceded by a ‘1” symbol; in such cases an “Implicit binding” Is impl ied (see section
2.4).

The update set consists of a set of routIne names from among those defined with the base type.
Update sets give restrictions on the effect-producing actions that may be appiied to an object 1 0 

~ 0
Is a type description, Update(D) denotes Its update set.

2.2.3 NomInal Type

A nominal type . hIts a type, consists of a base type, a (possIbly null) sequence of actual type
qualifiers , and an update set. These notions are defined exactly as in the definition of type.

A type Is always associated with an object. A nominal type, on the other hand, is always assocIated
with an identifier. The nominal type of an identifier may, in the general case, be less specific than the
type of the object to which that identifier is bound; however, the type of an object wifl always match
the nominal type of the identIfier,

2.3. BInding

During elaboration, some identifiers become associated with — bound to -- entitles; these entitles
may be objects, routines, or types. The binding of Identifiers to objects Is of particular interest and
includes both the declaration of variables (and associated instantiatIon of an object) and parameter
passing.

in all COntext s in which an identifier may become bound to en object (I..., in a variable declaration or
formal parameter position) there Is an associated type descrIption. In the case of a variable
declaratIon, this description determInes the type of the obje ct created. in the case of a formal
parameter, the type description defines the types of allowed actual parameters. in both cases ,
however , the type description is elaborated to a nominal type which determines the permitted uses of
the object Identified through this identifier.

10 
~~~ pra ctice we allow more than just the names of effect-producing operations in the update set part of certa in

t ype descriptions, notably those which scecify generic fcrmal parametars. In such cases we allow non—effect—
producing attribute ‘,ames as well; this is merely a ~honthanO for an ‘assumes c lause ” (see section ~.12).
This abbrev istioni is perm,tted because of its simii.nit y Of intent to Pie uodat• set : it describes a set of attributes
which th. routine or ~~~ body recuires to, correct Operation.

- -
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In both declaratIve and formal parameter positions the description of a binding may be preceded by
either var or const. The only difference between the two Is that In the latter case (const) the update
set of the identifier is set to empty; In the form er (var ) case the update sat is determIned from the
associated type descr iption. A particular consequence of this mechanism Is that parameters in comet
positions are, intuitively, passed “by reference ” but cannot be modified by the called proc.dur..

If it Is an identifier bound to an object , then we refer to this object as Obj(k) and to Its associated
nomin al type as Type (k).

2.4. Typ. Matching

The process of parameter binding requires a notion of what it means for an actual parameter to
match, or satisfy, a formal parameter specifIcation. Intuitively this process Involves determInIn g that
the nominal typo associated with the formal parameter “ Includes ” , or “ covers ” , the nominal type of the
actual -- that Is, ensuring that the behaviors permissible through the formal parameter name are amon g
those perm IssIble through the actual parameter name. For simplicity we break thIs process into three
subprocesees; subsumption, syntactic satisfaction, and implicit binding, Each of these is used for a
different kind of actual/formal matching as specif led below.

A list of actual parameter s 
a~

Is said to match e list of formels
f 1:t 1, f2:t2 f&tn

where the ci are objects, types, or routine flames, if there exists a bi ndi ng of objects, types, and
routInes to the implicit formeis In the t1 such that it each f 1 Is bound to a1, then for each I,

1. If ti Is a description of a routine (
~~~

, vproc, func, or sel), then a1 Is the name of. “pros”,
or “sel” with formal perimeters identical to those of t 1 after possIble renamIng of formal
parameters.

2. If t1 is “form” (or 
~~~~~~~ then ai Is a type (If a

~ 
is a partial type t1 must have been e!e~~and the essumed def inition of f1 (3Cc section 5.12) I sysWactica~iy satisfied (see

section 2.4) by a1.

3. it t1 is a type descript ion, then a
~ 

must be an object such that when t1 is elaborated , t1
subsumes Type(s1).

In addition , all Implicit fo rmals bound to types must be bound to types syntactically satisfying the
assumed definition of the fo rm (see sect ion 5.12).

The notions of subsumptlosm, syntactIc satisfaction , and Implicit binding are def ined below; we begin
with the notion of subsumption -- the kind of matching used when an object parameter Is expected. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Definition, We say that a (nominal) type T~ subsumes a ( nominal) type Ta (in symbols , T1>>T5)
If

1. Base (T f ) øase(T 5).

2. iength(QuaI(T~)) � length(Qual(T6)). Note: if length(0ual(T~)) < Iength(OuaI(T6)), the
formal qualIfier sequence of I~ Is extended on the right wIth a sufficient number of
unit’s.

3. For each qualifIer of Tf, I.e., Quai 1(Tf ):

a. If Queli(T t ) Is unk , Quai1(T 5) may be anything.

b. if OuaI1(T f ) Is a type, Ouai i(Ta) is also a type and OUaI1(Tf)))OUSI((T~)

c. If 0ual1(T~) describes a routin e, then Oual1(T 5) Is also a routine and Qual 1(T5)
matches Quai1(T~).

d. If Oual1(Tf ) is an object of base type U, Oual1(T5) is also an object of base

type U and the value at the resu lt of apptytng &s toT U to 0ua11(T f) and
QUaIi(T a) would be true.

4. Updat e(T~) C Update(T~).

In some cases condition 3d cannot be checked at compile tIme. At the discretion of the implementors,
the complier may provide the options of generating warnings, generatIng checking code, or refusing to
compile such cases.

Definition, Two types ar e identical if each subsumes the other.

In Aiphard, both routines and formi may be “generi c”. That is, they may require types as parameters-- or, equivalently, they may have parameters whose type is not specified In the routine (form) header.
in such C 1SCS there will be an “assumes clause ” which specifies the properties that the routine (form)
assumes about the generic parameter; this clause gives suffIcIent InformatIon to check all uses of the
parameter locally. in order for a given use cf the form or routine to make sense , the actual paramete ’
must at least meet the syntactic assumptions made about it. Thus th. notion of matchIng formal and
actual parameters In Such cases Involves of determining whether the actual parameter syntactically
satisfies the formal parameter assumptIons ~~

~..4ore generaily, of course, a prooi will be required to aemonstrats that the actual par ameter mal~ee semantic
sense as well. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Definition, Given an assumed declaration of a generic parameter , T:
form T

specs
<definitions of

and a candidate actual type

whose base type is declared
form

specs
we say that the type 0(a1,...) syntactically satisfies T if textual substitution of “Q(a 1,...) ” for
“T” uniformly throughout the specifIcatIons of T results in T’s specifications contaInIng
declarati ons of t

~ 
,...f ,~ identical to those In 0’. specificatIons (IgnorIng assertions and

implementations), though possibly only after suitab le renaming of formal paramet ers .

In the process of determIning whether an actual parameter of type T matches a formal parameter
specIfIcatIon we may discover that Qual1 of the formal is an identifi er preced ed by “?“. Such idantiflers
are called “ImplIcit formal parameters”, and are “Implicitly bound” to corresponding (qualifiers of the)
actual parameters. Such bindings are performed before other matching.

Definition, Let T~ be the formal type and 1~ be the actual type. It, In determining whether
r~>>r5, Base(T~) or OuaI1(Tf) is an Identifier preceded by a “1”, Th. Identifier Is implici tly
bound to the corresponding Bas.(T5) or Ous%l(l a) and becomes an “Implicit formal peraineter ” .
The nominal type of an implIcit formal Is made Identical to the nominal type of the corresponding
form formal. Note that only one bIndIng Is establi shed tar such ident if iers , so multiple
occurrences must be consistent.

In the proced ure declaration
proc P(x:vector(int,?Ib,?ub)) Is ...

for example, “ib” and “ub” are such Implicit formal .. They ars respectIvely, the lower and upper
bounds of an actual parameter vector. Thus, If som. program fragment contains

var y:vector(int, 1, 10); ... P(y)
then 1 and 10, respectively, wIll be Implicitly bound to the formal. lb and ub.

The followIng table att empts to recap the essential aspects of the notion of actual/ formal paramet im
match ing;

Formal Actual Matching Rule

x:form fuii type syntacti c satisfaction
type syntactIc satIsfaction

x:<routine description) routine name point 3 of m.tch rule
x:?T object Type(object) must syntactically satisfy T
x :<type desc ription) object subsumpt ion
object object equality under &e for th. type of the formal

anything always match ee
match after implicit binding

routine name routine name same routine
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Chapter 3
Eas lc Lexical Structure

3.1. Symbols

<letter> :: A B 1. . I Z a 
~~
.. .

<digit> :: 0 1 j . . . J  9
<alphanumeric> :: <letter> <digit> I
<special Symbol> ::— <baSic symbol> ( (QperstOr’
<basic symool> : ~~~~ I g

~~ I Oi l;  ~ l (  I ) J  8 I .  :: I & I
Li I t~~ tiis. I Li I c.u~ I
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I px,tlooo I I tu~ i I
~~~~~~~~~~~~~~~~~~~~~~ I —
~nal ~~~~~l!u~~~t a,j ) tabeI )

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~forward eilii ,iil I 1 I
invariant I initialiy I reomap I
~~~~ I enumerated assumes I aeneratpr

<oper ator> <binary Operator> <unary operator’
‘binary operator ’ ::— 1~~a~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~<assign op>
<unary ope rato r> ~:— -

Typographical features such as blinks (spaces), ends of lines, etc., are generally not significant (but
500 Section 3.4.3); an Implementation may use them to delimit Identifiers, numb ers, etc. Outside
strings, no such feat ures may appear immediately after the symbol “8,” or “7”, or around the symbols
“.“ and .i$~ when they are used as descr ibed In sections 3.4.2 end 4.3.

Upper and lower case letters ar, distinct. Also, note that the gr ave symbol Is considered a
(slgnIfic~ nt) alphanumeric and thus may be used in constructIng identif Iers ; it Is intended that this be
used to improve program readability by separatIng mnemonically slgnifeant portions of such Identifiers.

Basic symbols such as are conceptually single characters and are underlined In this report to
emphasize that fact. An Implementation, however, muSt reserve (alt upperliowor case spellings of) the
corresponding Identifiers to denote these symbols. Thus “BEGIN”, “begin”, “Begin” etc. are all
interpreted as the basic Symbol ~~~~~~ we strongly encourage, however , consistent use of on. spelling
in & gIven program.

3.2. Comments

The following two commenting construots are lexica lly equIvalent to a space (blank ) character when
they appear outside of strings.

note <any sequence not containing the lexeme “ eton” ) eto n
!<any sequence up to end of line>

Th. first commenting Construct encountered in a line takes precede nce over any contained within It.

-
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3.3. identif iers

3.3.1 Syntax

<identifier> ~~~ <letter> - (<alphanumeric>}
<special identifier> ::— &start &finisii I &next I &done &vsiue ( &subscript I &‘operstor>
<identifier list> ::— <identifieø’,

3.3.2 Examples
A
53
TheoogThsCatChased
The ’Dog ’Ths Cat ’Chased
the’dog’ths ’cat ’ chassd
start
&start
8,.

All the above IdentIfiers are distinct.

3.3.3 SemantIcs

identifIers have no inherent meanings. They identity objects, forms, types, procedures, selectors,
statements, and parameters. Declaration s establ ish the meanings of Identifiers within particular
scopes.

Two Ident if Iers are di.f ined to be similar If they dlfler at most In the typographIcal case used to
spell them; thus “ABC”, “Abc ”, “aBc ”, etc. are all similar. Except when used as routine names , similar
identifiers may not be declared in the same scopel2 .

SpecIal identifiers denote entitles of special sIgnificance in the language. They may be def ined but
never directly referenced; they are invoked as the consequence of using some other construct defIned
by the language. A simple example of the use of such symb ols appears in sect Ion 3.4.1, where
the language-define d notion of “.“ Invokes the user-definable function named “&+“; more Interestin g
examples may be found In sections 4.7 and 4.8. (RequIrements on the definItions of
such routInes appear In appendix C.)

3.4. Special RewrIte Rules

In order to simp lify the language defin ition , a number of familIar and convenie nt notat ions are
provided Indirectly rather than as a part of the sy ntax. To acco modate these, we defi ne several
“ rewr ite rules ” that transf orm programs from the more familiar notation to that descr ibed by the report.
These transfor,natlons convert Infix operato rs t~ functI on Invocations, provIde ‘qualified names ” , and
int roduce semicolons. We shall use the notation C1 --> C2 to desc ribe some of those transformat ions ;
the notat ion means that constructs of the form C1 are trans formed into constructs of the form C2.

restr ict ion us imposed in order to prevent eubt is errors arisi ng fr om Pie use of similar identifiers in the
same sco pe. Routinøs are esempted from the restriction in Order to permit operator overlo ading.

IlL -“~~~~~.
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3.4.1 Operators

Neither the syntax nor semantics of AIphard Includes the traditional notion of arithmetic or bc.ioiean
expressions with infix operators. Rather , the language is defined as though all operatIons were
expressed as function invocations. In order to permit the user to wrIte programs in the more familiar
infix-expression format, however, two transformations are performed. First, the input text Is fully
parenthesIzed in order to observe the following precedences and assoclativitles:

1. Associativit ies: The operators of highest and lowest precedence are right associative; the
remainder are left associative.

2. Precedence:
(highest precedence)

* / dlv rem

not
ana cand
or cot
imp
;“ •:“ —~z “ = etc. (lowest precedence)

Aft er being parenthesized, expressions are converted to functional form. If ix’. and 
~ 

denote arbitrary
unary (monadic) and binary (dladic) operators, respectively, then the following trar iformatlone are
performed:

<term> 1 / .~ <ter m)2 —— > &~~(<t erm) 1,(term)2)

~~<tarm) —— > &~~(<tervn>)
<term> 1 ~~:“ <term> 2 —— ) &:‘((term) 1, &~~(<term)1,(term)2))

where the <term)s denote any phrases balanced In parentheses.

After being placed In functional form, three of the relational operators are rewritten as the boolean
negation of one of the remaining three:

&,~(t 1,t 2) —— > &not(&a(t 1,t2))

&�(t 1,t2) — — )  &not(&>(t 1,t2))

&�(t 1,t2) —-)  &not(&<(t 1,t2 ))

In addition, two of the boolean operators are rewritten as conditional expressions:
t 1 ccnd t 2 --> i ft 1 then t2 eise false fl
t 1 cor t2 --> f t 1 then true else t2 fl

This rewrite is required to avoid the possibility of undefined argument values In invocatIons.

Note that , as stated earlier , symbols of the form &<operator> may be defIned by the user. Thus, by
gIving a definition to “&.“, the programmer gIves a definition to the operator “•“; this does not allow
redefinition of exIsting operators, but does allow th sse operators to be extended to new types.

3.4.2 Name QualificatIon and Subscripting

It Is often Convenient to refer to the (visIble) components of an object by symbolic names; for
example, the components of a record have t~aditionaily been named In thIs way. The conventional
syntax allows “X.y” to denote ~he y component of X.

I. - - ~~--- -~~~ -~ - - -~~- - -  - - -~~ -
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The syntax of Aiphard does not support such “dotted name” qualification directly, but instead uses
the functi onal form , y(X). To pormit the dotted-name notation and user-defined subscrIpting, qualified
names are transformed In two steps. First, dotted names are eliminated In favor of a functional form:

<qusin.me).<ldentlfler) --> <ldentlfier)(<qusiname>)
where <qualname> Is any sequence of identifiers (Including special identifiers), S~i5, i$I~~, and
sequences of iexemes balanced and enclosed in parenthese, or square brackets. The rule Is applied
right-to-left; thus, fo r example

A.y •-) y(A)
Q.g(s.t].f —— > f(g(Q)(t(s)])

After all dots have been removed, square brackets are removed:
<term)(<expression list)] --) &subscr*pt(<term>,<expreuion list>)

Thus. tne example ab~ je becomes
Q.g(s.t].t —— > t(g(Q)(t(s))) ——> 1(&subscript(g(Q),t( s)))

Note that the user may defi ne the selector &subscnpt and hence may specify the access algorithm for
a type.

3.4.3 Automatic Introduction of Semicolons

The effect of the following transformation is to eliminate the need for explicit semicolons to separate
declarations or Statements when those semicolons would fall at the end of a text line. According to the
syntax In thIs report, certain phrases are separat ed from each other by semicolons. In those cases
where the fInal iexeme on a line could end such a phrase , e.g.,

end, ) , fI , esac. to, ni, od, exitloop
and the next lexeme (I.e.. excluding comments) could begin such a phrase , e.g.,

~e2!!!’ (. tt. S~~.!’ 
with, , do , !~the compiler automatically inserts a semicolon between the two unless, on the basis of preceding

symbols It is possible to determine that doing so would render an otherwise syntactically valid program
into an invalid one.

3.5. Special literais

Certain well-estabilahed literal denotations exist far some types (e.g., integer , real. boolean).

3.5.1 Syntax

<speci al literal ’ :: (unsigned integer> I <unsigned real> I istring> I <boolean” I
<unsigned integer’ ::— {cdigit>)
<unsigned real’ ::— unsigred rationai>{E<scate-iactor )0 I (unsigned integer~Ecscale_f.ctor>
<unsigned rat ional > ::— <unsigned riteger>.<unsigned integer>
<scele-factoi’> :~~ (.I_}e<unsign.d integer’
<string’ ::— “<any sequence of characters with all quotes doubled~’<boelean> . — tr ue I fu ss
<radix> ~ • (<elphanum.ric>}’,i .i phanumeric>

3.8.2 examples
3
1 47.5E-3
3208
true
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“ABcdEF”
“ He sald,” Har”'”

3.5,3 SemantIcs

<radix> u teru s are “of type rawstorage. The <alphanumeric> following the “0” character specifiesthe representation base. The Values of the alphantimerjca are interpreted as follows: 0-9 denote 0-9,A-Z denote 10-35, e-z denote 36-61. Note that 0, 1 and (zero, one and grave) are not legal basedenotations.

_ _ _
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Chapter 4
Program Structur•, Expr.sslons and Stat.ments

4.1. Program Structure, Blocks

A compilation unIt may be either a block or a set of declarations. If it is a block, it Is a “program” in
the traditional sense -- a stand-alone computation. If It is a set of declarations, the s cope of the
declarations Is system-dependent.

4.1.1 Syntax

<compilation unit> ;:— ~~~~ <block> g~~ I <exec dccl list>
<block> ::— {(exec dccl list> } {<stmt>It (.1

~<exec dccl list> ::— ( <ex~ c dad>
<exac dcci> ::— <var deci> I ccon~t dad> <proc dad’ <form dad> I <label dcci>

4.1.2 Semantics

A block specifies a computatIon whose .lf.ct i~ as though the fo llowing ord•r of execut ion were
observed:

1. Elaborate the declaretlons in the order given (see 2.2 and 5.5).

2. Elaborate the statements (<stmt>s) in sequence (aside from exits; see 4.9).

3. Destroy the objects created In I in the reverse order of declaration.

The scope of all declarations In a block is the text of the block, where not superseded by nested
declarations.

4.2. Expressions and Statements

Express ions end statsments cissignate actions to be performed. Their elaborat ion results in changes
in the execution state of the program. Expressions differ from statements only In that their elaboration
may “produce values” as well as performing other actions; statements only perform actions. For
defInitIonal brevity and convenience, every expression Is considered to be a statement, but not
converse ly . When an expressio n Is used in a context requiring a statement, Its “value” Is discarded.

Somewhat more precisely, the “ value produced by an expression” Is an object resulting from its
elaboration; the type of this object Is uniquely determIned by the rules stated In the remaInder of thi s
chapter. ThIs resulting (unnamed) object exists until any ImmedIately •ncloslng expression or
statement that uses It has finished execution.

-~~ -- -~-~~~~~~ - - - - -



20 An Informal DefInitIon of Alphard

4.2.1 Syntax

<expression> ::— <invocation> I <conditional expression> J <valu. expression> I
<with expression> I <liret expression>

<strnt> ::— <expression> <loop stmt’ I ccxii stmt’ I <null stmt> I
<inner block> I <labeled stmt> I ccssert stmt’

<labeled stmt> :: <identifier> : <stmt>

4.2.2 Semantics

Statement labels are used by exit statements (sectIon 4.9). The effect of an exit
statement is to force control to the point Immediately following the labeled statement whose label Is
used in the exit. Labels must be declared (see section 5.4) and may be used to iabei only
one statement within the scope of their declaration.

4.3. InvocatIons

4.3.1 Syntax

<invocation> ::— ‘special literal> <ctmple wocatton>{<actuais’)* (<invocation>)
<act uals> :: ((<actuil>), )
<actual> ::— <exp ress Ion > I <type description’
<si mple invocation’ :: (iidentifier>$ }‘ (idsnIifi~r> I <special identiti.r>

Infix and prefix operators fail under this syntax by the rewrites of sect ion 3.4.1. Subscr iptIng,
denoted by “(...]“, falls under thIs syntax by the rewrites of section 3.4.2. Note: <special identifler>s
may not appear in source programs; they result only from these rewrItes.

4.3.2 Examples

The moat obvioua <invocstlon>s are nose denoting routine “calls”, e.g.:
sln(x)
Integ rate (F ,a,b.eps)

in addition, however, <invocations> result from the rewrite rules for Infix operators and subscripting,
e.g.:

&:~ (a, &.(b,c))
&:s(x, &subscript(V ,I))

Finally, <Invocatlon)s occur as part of type descriptions:
vector(int, 1

4.3.3 SemantIcs

A simple Invocation may designate a type, an object, or a routine (a procedure or selector ) as
indicated in chapter 5. IdentIfiers may designate multiple entities In arty given context
(operator overloading), so some means of resolvIng the conflIct Is necessa ry . An Identifier may be
qualified on the left by the name of the form containing Its definition; such qualifIers are se parated by
“3”. Alternatively, the proper defInitIon may be determined by examining the types of the actuaia -—
that is, by choosing that definition for which type chs..king (sectIon 2.4) succeeds. It Is an error If the
compiler cannot dlsamb,guate statIcally (I..., at compile-time).

Assuming that the entity designated by G is uniquely determined, an Invocation such as:
G(e 1,e2 e~ )

denotes an elaboration and possibly a resulting Value CS follows: 

-~~~~~ -~~~~~~~ - - ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
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1. The actual parameters , e
~
, are elaborated In an undefined order. An e1 designating a routine

wIthout an argument lIst designates that routine , rather than the value result ing from Its
execut ion. The results of this elaboration are objects , types , and routin es (see section
5.0 for the evaluatIon of partial types).

2. The number of formal parameters of 6 must be n (n~0). The actuals must match the tor tnals
of 6 (see sectIon 2.4); It is an error if they do not.

3. Each formal parameter of 6 which des ignates a routine (as In “f:e~~
(...)i, a type (as In

“T:torm”), or a reference parameter (as in “var x:...” or “conet x: ...” ) Is bound to the
corresponding e~ (also see section 5.?).

4. Each object formal (see 5.7) wIth an empty <bindIng> Is treated as If It were
specified conat (see below).

S. For each formal Identifier, k , desig na~,d to be a const parameter (see section 5.7),
Update(k) Is made empty. For all other ¼ bound to objects, Update(k) Is derived from the
type description of the formal parameter.

6. ‘ar and const parameters are checked for possible overlap (see section 2.1-). In order for
thw <Invocation) to be legal It Is necessary that either

there Is no overla p between an actual parameter that stands in a var position and any
other actual in either a var or corist position.

or

all overlapp ing positions are designated alias In the formal parameter specIfIcatIons.

7. For each formal identifier , ¼, designated to be a copied parameter , a new object of the same
type is Instantiated. The values of the actua l parameters (see sectIons 5.0 and
5.?) are copied Into these variables from the corresponding e1 using the “&:

proc*durs defined for that type; It Is an error If the “& :u ” procedure is not defined for the
type.

8. 11 G is a routine and returns a value, or It it is a selector (see section 5.8), its
definition contains a type description which specifies the type of Its result. This descr ipt ion
is elaborated. If 6 is a or func , an object of the type is instantiated to receive the
“ value ” that will be returned. If 6 Ii a selector no object is instantiated; the type
description defines the type of th* object whose (generalized) address is returned. Note
that a or f uric must specify a full type for the result; a sel need linly specify a partIal
type.

9. It 6 is a routIne its body is elaborated with the establIshed bindings. if 6 Is a type
descri ption either an Instant Iation or a matchIng Is performed, depend ing on the context.

10. Any auxiliary objects (I.a.. copied parameters or actuats which are themselves result
objects of procedures) are deallocated.

it should be noted that , by the rules above, the Invocation of a parameter iess procedure. P. is
necessarily wrItten “P0”.
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4.4. ConditIonal Expressions

4.4.1 Syntax

<conditional expression> ::— <if expression> I <cas, expression >
<if expr ession> ::— tf. ‘expression> j

~~ 
<block> ( tIii <expression> 

~~~ 
<block> ) (~ j ~j  <bleck>)e ~

<case expression> ::— ç~~j  <expression > g~ <cas .> (
~ f~ 

<case> }* (~ j~j  <block> e
<case > ::— (<ax pr.saio n>), :: <block>

4.4.2 Examples
It a(I))max then maxp :“ I; max :“ a(l] fi
y :~ if x)z then x else z fi
If a<b then t :“ 1 elif a<c then t :— 2 else t u 3 fI
case IC of

ADD:: MB :“ C(EA]; P : • R+MB elof
SUB;: MB ;* C(EA); P ;. P-MB slot
MUL:: MB :• C(EA); P :e R M B  else
ERROR

esac
I : “ case n of I ::MALE elof 2::FEMALE else NEUTER esac

4.4.3 Semantics

Conditional expressions denote expressions and statements to be evaluated conditionally. Such an
expression has a value if

a. All <biock>s In It are single expression s ,

b. All these expressions are of identIcal type (this type becomes the type of th. expression),
and

c. An else ciause is present.

The expression

Is equivalent to
If B1 !! ~~~

5i 5.!!!
If B2 then 

~2 !!! .!

If Bn then S~ 5.!!! 5n.1 fl
fI

fi

in the express ion
if B then S 1 !!!! ~~2!!

B must have a result of type boolean, and the elaboration of B must not have observable effects. It
the value of B Is true, 5

~ 
Is evaluated , otherw ise 

~2 is evaluated. If the If express ion occurs In a
context requiring a value , the value Is that of the expression chosen (by the rules above, 

~ i and
must be simple express ions of the sam. type). in the absen ce of an else clause , 

~2 I. taken to be
skip (see section 4.10). 

—~~~~~~~~~~~~~ - - -
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in the expression
i!!.! E0 of

E11.... E1~~~;~ S1 elof
E21.... E2~2

::$2 eiof

Emi E~~~~::S~~elSS3m.i
esac

E0, E1 1 Emn must all be expressions of the same type. E0 Is evaluated. The E11 are evaluated (In
unspecifIed order) and the results are compared wIth E0 using the &. operator for Type CE0). It i* ~nerror if there is no such operator. The evaluation of E0 and the Eij ’s must not have observable effects.
As soon as a match yIeld s tru e (say with E

~j). S1 Is evaluated . If all matches tail , 5m,1 Is evaluated.
Exactly one block S1 is evaluat ed for each correct evaluation of the case expression. The value of the
case expression is th at of the S1 evaluated (again, each S

~ 
must be a single expression).

4.5. Value Expression

4.5.1 Syntax

<value expres s ion . ;:— ~~~~ identifier’(.-<obj type>)’ gi <block> ~

4.5.2 £xamples
S a value y:int of y:uO; fo r x: Invec(A) do y:’y.x od to
value A of Munge(A,43) fo

4.8.3 Semantics

A value expression Is used to convert a <block), and hence a sequence of declarations and
statements, Into a (value-yielding) expression. In the expression

value x:T of S fo
the va riable x (whose scope is 3) 15 Instantiat ed and S is executed. it “:<obj type)” Is omitted, as In

value x of S fo
the exist ing instantiation of x Is used. In both cases, the result of the value expression is the object
Obj(x).

4.6. WIth Expr.ssiona

4.5.1 Syntax

<with expression> :: . ~jj~ <wi th list > i~ <block’
<with list> :~~ ( <identifler’sinvocatien. J,

4.8.2 examples
with Z:ACi]..onCk] In Z.age . 0; Z.number “ k iii

R:x.y.z, 0:x.y.w In var s:T; 5 a 0; 0 :~ N; N :u 5 flu
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4.8.3 Semantics

A with expression provides a local shorthand for complicated invocations. The phrase
with x:R In S nI

causes elaboration of P. binding of x to P. and elaboration of S with that binding. It the <block> is a
single expression, the wIth expression yields a value (the value of the (block>).

4.7. FIrst Expression

4.7.1 Syntax

<first expression> ;:— ~~t t.mpl ate> suci th at <expression > (th2n<biock>) (~~~j <block>}* fl
<template> :: ‘identifier> f~2~ (<identifi.f>~~ Ctyp. description> I ‘identifier> ft2m <invocation>

4.7.2 Examples
first I from upto( 1 ,n) suchthat A(l] )max then max u A(i]; jmax :u I fi
y :“ first x from lnvec(A) suchthat x>max then x eiss 0 f i

4.7.3 Semantics

The flr~t expression Invokes the generator specified in its template (see sectIon 5.1 1) to
produce a sequence of values. These values are tested In turn by the suchthat clause , whIch must be
a boolean expression and which may not have observabl, side effects. If the fir st express ion

first x from g:O suchthst B then 
~i 

else S2 Il
occurs in a context where- a value La not required , Its semantics are prec isely those of the statement

L. 1:

var g:0; &start(g);
do

if &done(g) then &fIntsh(g); leave 12 fi
with x;&vaiu.(g) in if B then S~ ;&fInish(g); leave LI II uI
&next( g)

od

arid L2

end 11
where &start , &done, etc. are provided by the form (or generator ) 0 (see also sections 4.8
and 4.9). If either the then or the else clause Is absent, It defaults to ski p (see section
4.10). If “g:” Is absent, an elsewhere unused identifier is substItuted by the compiler. It the
full type In the template Is absent , the declarat ion (var g:Q) is omItted; in such cases an existing
Instantiation (namely “g”) is used.

Note that the statement 
~2 In the expansIon above is outsIde the scope of the declarations of g and

x; n•ither of these may be referenced in

If the first expressIon occurs in a context requiring a value, 
~i 

and 
~2 must both be present and be

sIngle expressions of Identical type (say T). In these contexts, the semantics are precisely thos e of
value t:T of first x from g:0 suchthat B then t :S S~ else t: uS2 !U! 

~~~~~~--- -~~~~~~. 
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4.8.1 Syntax

‘loop st in t> :.. <simple loop> wflil. atmt’ I <f or stmt><simpl e loop> :: ~~ <blccli> ~~‘while st int> 
~~~~ <expression> <am ple loop>

‘for st int> .~. f~g~ <template’ ‘simple loop’

4.8.2 Examples
do

If x”y then exitloop fi
it x >y then x u x-y else y :“ y -x Il

ad

While xu~nlI do P(car(x)); x ~ cdr(x) Cd

for x from Invec(a) do x :u 0 ad

4.8.3 Semantics

The simpl e Ioop~ “do S 04”, executes S repeatedly; it will terminate only it an exi t command (seesection 4.9) Is executed. The while loop, “while B do S od , is semantically equivalent todo I f not(B) the ., exit lcop fi; S 04
The for loop, “ fo r x from g:Q do S od” , is semantically equivalent to

begin
var g:0; &start(g)
do

If &done(g) then exltioop fi
with *: &value(g) In 5 nI
&next( g)

04
&?lnlsh(g)
end

As In the fIr-st expression (section 4.7), If “g:” Is absent, an eisewhere-unused Ident ifier is substitutedby th• complier. If the full type In the template Ia absent, the decl aration (var g:Q) Is omitted and anexisting instantiation is used.

4.9. ExIt Stateme nts

4.9,1 Syntax

<exit st in t> ~ •x,tIoo~ I fl ~~j  <ideniifI.r>

4.9.2 Exampl es
leave I
exltloop

See also sections 4.5 and 4.7.
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4.0.3 Semantics

The statement “leave I” occuring within a statement labeled “L” (or a routine named “I”) causesevaluation of the Innermost such statement (routine) to terminate; executIon resumes at the point itwould have if the statement (routine) had terminated normally. (Note: If the relative nesting of the
labeled statement Is such that, had the leave not been executed , objects would have been
deallocated and fInal clauses executed, these same deallocation actIons and finalIzations areperformed In the same order as part of the leave.)

An exltloop causes termination at the Innermost loop statement (do, while, or for , sectIon 4.8)
containing the exitloop.

4.10. Null Statement

4.10.1 Syntax

<null stint> —

4.10.2 SemantIcs

The null statement does nothing.

4.11. Innsr block

4.11.1 Synt ax

“fin er block’ ;:— 
~~~~~ <blocli> 

~~~ I ~~~~ <block> f~~~j {<id.ntifier>)”

4.11.2 SemantIcs

The declarat ions and statements of the block are executed as given in sectIon 4.1. If the optloiai
identifier is present , it must match the label of the inner block or the name of the routine whoss body Is
the inner block.

4.12. Assert Statement

4.12.1 $yiitax

<assert stint> ~ hULL ‘asaertion,

4.12.2 Examples
do assert (GCO(x.y) • OCO(sQ,yO) } ;

If x.y then exltioop fi
If x )y then x .:u y else y .:u x Ii

od

--

~

--

~

- -

~ -
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4.12.3 SemantIcs

An assert statement indicates a condition that must be true when control passes through the
statement. It hes no semantic effect The syntax of <assertion > Is not specIfied by the language
(other than that the assertion text must be enclosed In, and balanced In brackets, “(...}‘9. It Is the
province of a venfler or verifying compiler only. 



-~~~~~~~~~~~~~~~~~~~~ -~~~~~~~ 
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Chapt.r 5
- “ Declarations

Declarations define routInes ~~~~ vproc, func, and sel declaratIons) and classes of types (form
declarations), specify the instantiation of objects (var, conet), and bind Identifiers to these entities.

5,1. Scope of Declarations

The scope of a declaration -- the program text In which the bindIng It establishes is valid -- depends
on the kind of declaration and the place it appears. In the sequel, normal Algol scope means th e
Innermost block containing the dec larat ion, includIng all blocks it encloses that do not redefine the
Identifier. Restricted Algol scope Is the same as normal Algol scope, but excludes the text of routIne
and for m declarations.

Generally IdentifIers naming routines and forms obey Algol scope rules; identifiers naming objects
(i.e., variable names) obey restricted Algol scope. Thus, no free variable names appear In routine or
form bodies; all variables are either locally declared or passed In through the parameter list. A few
additional scope restrictions are discussed later.

5.2. AuxIlIary Declarations

Any declaration may be prec eded by the keyword aux. IdentIfiers defined In such declarations may
not be used (except within the assertion language). Auxiliary declarations serve as modelIng tools In
the specifications; the entIties described by such declarations may or may not exist In the
Implementation. If such entitles do exist, th ey may be Implemented in a manner different from tha t
described in the eux declaration. (Note, however , that the clause as specified may be used in an
iMplementation to force precIsely the representation appearing in an aux definItIon of an entity ).

An auxiliary declaration of a boolean-valued function, for exam ple , mIght be conveniently used to
express a condition that is useful for verifIcation or specIfIcatIon purposes. No obligation to actual ly
implement this function (whose implementation might be undesirable or impractIcal in some
envIronments) is implied by the aux declaration. Consider , for example , the form :

form DIrectedGr aph(s ize:int) Is
s pecs

eux fu nc lsTree(g :DirectedGra ph):bo o lean

~~~ ( 
retur ns tru e if? g is a tree );

end OlrectsdGraph;
This form provIdes the predica te “ IsTr e.” which tests an arbitrary directed graph for treenes a; since
the predicate is specified aux it can only be used in specIficatIons, not In code.
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5.3. Remote DefinitIons

OccasIonally the detailed implementation of an entity (varIable, routine , or form) may appear at a
poInt remote from it~ declaration. The following Important cases arise:

1. forward: It may be necessary to mention an ent ity before is defined; this Is logically
necessa ry In mutually recursive routine and form definitions. A forward indicates that the
requIred definition appears later in the current program text.

2. as specified: in the Implementation at a form It may be desirable to define an implementati on
of an entity to be identical to Its specIficatIon; such definitions are denoted as specifIed.
Somewhat similarly, a form Implementation may mention an (object) parameter of the for m,
descrIbing It as specified, to denote that a run-time representation of the parameter is to
exist.

3. ext.rnaI((system specs>): The definition of some entitles may be defined external to the
present program text, e.g., on a Nfllehl or a ¶lbrary~ supported by the host system. in such
cases the entity may be defined as external. The (system specs> Is a system-depende nt
notion (and syntax) that describes the place where the defInItion Is to be found (e.g., In a
particular Nf II.”).

5.4. Label Declarations

5.4.1 Syntax

‘labol dad > ~— ~~~~ <IdentIfies’ lIst>

5.4.2 Examples
label Li , EXIT, Rethink;

8.4.3 SemantIcs

Labels , like alt other Ident ifiers , must b• declared before use. A label may be ‘placed (used to label
a statement) only once in the sco pe of Its declarat ion.

5.5. ObJect DeclaratIons

6.5.1 Syntax

~~~ :: <I’.IY’ ~~ (‘obj ~ecl $roup’(<on,t ~!‘<co nst decl> ::— <suy> çg~ j  {<Obj d c i  group’ {<.nit fin clause>J I const assign>)
<auv> ~<Cbj dad grove’ ~ — <~durtiii.r list> : <aD, type’
<obj type ’ — <type description’ 1 ~ 

,e.c fied
<m it tin claus.> . — — <aspresslofl’ I {~~I.tmt~}a (

~~~<cOnit ass gri’ ::. <identities’ lit> • ‘.wprssi,on>

L - - -~~~~~~~ -~~ ~~~ - - - ~~ - -  - - - -~~~~-~~~~~~- ~~~~~ -- - -~~~-- -~~~-
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6.8.2 Examples
var a,b,c:int, g:reai
aux const a:int • 5
var INF : tlle( vectoi’(mumble, I ,unk)) m i t  open(iNF)
var q,x.r:as specIfIed
var 0:queue(int) m i t  new(O) final dsstroy(O)
const A0O~0, SU8~i • MULTaZ

6.6.3 SemantIcs

Object declarations may occur InsIde form deciaratlons or In blocks; their meanings In the two f -contexts differ. See ~ectIon 5.9 for a discussion of their meanings in form declarations.

In blocks, object declarations have restricted NgoI scope (see section 5.1). Semantic~iiy, constant
declarations ((const decl )s) differ from variable declarations (<var decl>s) only In that, outside the
InitialIzation and finalIzation clauses, Jpdate(c) Is empty for c a constant; for variables the update set
is determined from the (type description).

The <obj dccl group>s withIn an oblect declaration are processed In unapecif led order (not e,
however, that declarations are processed In left-to-right order; thus the programmer may impose an
ordeflng if that is appropriate). For each group, the full type Is evaluated , and for each identifier, a
new object of that type is Instantiated and bound to the identifier. it an m it clause Is present, it is
executed. The deciaration

.x,y,z:T~E
Is equivalent to -

.x ,y.z:T m I t  x: y:sz:•E
if ‘:T” is absent (from a constant declarati on ), as in U~~~~ 1~~~~ aUSM, the type Is that of the expressIon to
the right of the equai sign.

A final clause, if present, Is executed just before deallocation of the variab les or constants with
which It Is associated. DeallocatIon is always In reverse of the (possibly un.peclfl.d) order of
creation.

Objects may be designated ‘as specified’ only In form implementat Ions (sect ion 5.9). ThIs
indicates that the <type description) is to be copied from the form specificat ions.

An <m It fin clause ) In a constant declaration can be omitted only In the specifications pert of a term
(see section 5.9).

56. Evaluation of Type DescrIptions

(type descr ipt lon)s are syntact ic enti ties which appear In object declarations and formal paramete r
$pSCltIc*tions. 
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5.5.1 Syntax

<type description> ::— <Simple invocation> ( (  (<formal quai>L” ) }‘ (<update sat>)’ I
Md.ntifier>(cupd.t, set>)’

<formal qusi> ::— arpressi ors > I ?<idsntifler>j-’cupdats set>)’ I (<identifier> )’ <typ. description> I

<updat, set> 
~ < ( <Identifier> I <special identifier> ), >

Note that the outer (>5 In the definition of <update set > ar, part of the language , not metabrack.ts
(see examples below).

6.6.2 Examples
Integer
vector(rea$,1 ,1O)
stack(T:form<&:u>,22)
collection(unk)
queue(process,?Iengtpi)

8.6.3 Semantics

The <sim ple Invocation> (see 4.3) must designate a unique form (‘$‘ qualification allow s duplicate
nested form definitions). Disambig uatlon on the basis of argument types is not performed.

ElaboratIon of a (type descrIptIon ), T(ei,...,en)(p i,.._pm), proceeds as follows 13 :

1. The e1 are elaborated in an undefined order. The results of this elaboration are objects ,
routines, and typ es. The following special cases should be noted:

a. The elaboration of unk Is unk.

b. The elaborat ion of ?identlfiers impiles an implicit binding; It Is Illegal IT this is not In
th e context of a formal/actual parameter Match ing.

2. The number of formal parameter s of T must be n (n�0). The actusIs must match the fOrmats
of I (see section 2.4). It Is an error If they do not.

3. Each object actual Is handled as in section 4.3.3.

4. The sequenc e of routines, types , objects, and tank mark ers produced by the precedIng
becomes the Qual proper ty of the result type. I is the Base type (see section 2.2). The p

~becom e the update set.

The (update set ) defines the update set of the type descripti on (see 2.2). The listed IdentifIers
must be names of routin es dec lared with the base type Only thesa routines and routine, with no visibis
effects may be applI ed to the object within the scope covered by the declarati on in wiUcit the type
descrIption appears. In the case that the update set Is attached to a ?identifler or a (type formal),
the listed Ident if iers must be further specified In an ‘assumes claus e’ (see 5.12) unl•sa they

13Note that an implementation may remaire compsie-tmm elaboration of those type descriptions used as formal
parameter specifications.

L  --~~~--- - - -~~
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are <special idontifier)s such as ‘&“. The assumptions about <special Identlfier>s are uniform and
are Included In appendix C. If no <update set> is given It is assumed to contain the full
update set of the type; the <update ~.t> ‘<) ‘ denote the empty set.

5.7. Formal Parameters

CertaIn entitles -- forms and routines -- can be parameterized. Formal parameters specify these
parameterizetions. The process of determining whether a given sequence of actual. conforms to the
sequence of formal parameters is known as matching or type checking. This proces. binds actual
paramet ers to the corresponding formal parameters. It may aiso cause certain implicit binding s of
Identifiers marked with a ‘?“ lexeme in the tormais; these Identifiers are Implicit parameters with the
same scope as ordinary formais. The implIcit bindIngs are in effect whenever the explicit bindings of
ordinary formals are.

The scope of a formal parameter to a routine is the text of the parameterized declaration, in the
“restrIcted Algol scope ” sense. That is, the scope of a formal does not Include routIne or form
declarations within the parameterized routine text.

The scope of a formal parameter to a form is at most the text of the parameterized form declaration:
it is also subject to ‘restricted Algol scope”. In addition, unless explicitly redeclared In the Impl
(specIfIcally, redeciered as specified), the scope of form formal. Is limited to the specifications and
object declaratIons (including nit clauses) of the form other titan shared objects.

5.7.1 Syntax

<tormais’ ::. ( ~<rOutiri. formal> <binding>’cobj formal> I <type formaI>}~’<routine formal> :; <formal id list> 
~~~ p.rms> I (formal Id list> ~~~~~ I ~~~ I ~ jJ<v parms>

<binding’ ::“ ( ç,Q~~ I I 4ILUJ’{ c~~ j I ~irJ }‘<formal id list> ::— <identifier list>
<obj formal’ ::— cformal Id list> <typ• description>
<type formal> : :— <formal id list> p gj~~~ }(<update sat>)’

5.7.2 Examples
(con-st x:T 1, var q:?T2. ~~~~ r:vectoq(ITZ,1,n))
(T :f orm , h:proc(x:resl):Int)

5.7.3 Semantics

Formal p~ ramOters give the specifIcatIons of allowable actual parameters and provide local names for
these parameters. A (routine formal) indicates a parameter position to be filled with a procedure or
selector. A (type formal) Indicates a position to be fined by a type description. An <ob) formal)
indicates a position to be filled by an object. The association of actual parameters to formais Is
determin ed posit iona lly.

The specification of an object parameter may be preceded by a qualifier that controls the bInding of
actual to formal; the possible qualifiers are ~~~~~~~~ const. var, and alias. The qualIfiers const and var
denota ‘by reference ’ parameters ; in both cases the parameter name is bound to the actual parameter
object. corist parameters (like names declared In const object declarations), have an empty update
set . As specifIed In sectIon 4.3, the qualifier ~~~ indicates that a local object Is to be instantiated

-4
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and initIalized from the actual by copying usIng the &:a operatIon defined for the type. The update set
of copied parameters Is set to empty, hence they may be used only for input. The qualifier alias has no
semantic effect, it Indicates that a reference parameter may overlap other reference parameters;
unless the alIas qualifIer Is present , overlapping reference parameters are prohibited.

For type formals the actual type description must be a full type If the formal Is specIfied as a form. It
may be a tuil or partial type If th~ formal Is specifIed as a

It no <binding) is specifIed, const Is assumed. It should be noted that for routine parameters not
qualifIed by alias, the compiler assumes that the semantic. ot const and ~~~~ are ident ica l 14 -- hence
the compiler Is free to copy const parameters if it seems desirable to do so. Tl’ii~ statement Is not true
for forms or In the presence of alias , and the optimization may not be performed In those cases.

The notation
a,b,c:T

is short for
a:T , b:T, c:T

Identifier s precedmd by ‘?‘ ar e implicit tormais. One binding i~ established for the Identif ier during
matchiflg, no matt er how often It appears. it is an error if it Is not possibla to astabllsh such a binding.
All instances of th~ identifier Inside a given <formals) list must be preceded by ‘7’.

5.8. Routine Declarations

Routin~~ encapsulate computations. A routine (proc. vproc, tunc) may or may not return a result
object. If it does, the update set of the compIler-generated name bound to the returned object Is
aiwsys null; the~s can be no eft acts on a procedure result. A selector always has a result and must
not have effects; unless explicitly restricted, the (update set> of a selector result Is the full update
set of the base type. Except with in form specitic atlcns (section 5.9), rout Ine declarations
have normal Algol scope.

5.3.1 Syntax

<routine d.ct’ ::— (vproc dect> I <Proc dad’ I <sal dad >
<vproc deci> ::— <aus’ (~g)j~~ (

~~r.9~ I (~~ jCroutine id> <v pai ns> <pre poSt> (assumes>
(<routine body>)’

<proc dad> ::— <aux> ~ jj~~~’ ~~~ <routine id> <parms> <pre post> <assumes> (<routine body~)*
cseI deci’ ;:— <aux’ fl~j)~gJ’ ~gjcroutlne id’<v parwis> ‘pre post’ <assume.> (<routine body>)’
<routine Id’ ::. ‘dintifier’ <special id.ntifier’
<pai ns> ::— (‘cformsls>}
Cv parriis> z— (<forinals>)”ctyp. descriptioø>
<era> :;— (~~j assartiOn,~)
<pre post> ::— pre’ (~~ j <assertion>;)’
<routine body> ::— j <*trnt> I j u scec;f ed Li forwa~d ~~, eiternal (<system specs>)

14 This assumption ‘a valid Only so long as user-defined assignment operators, “3:’.’, preser v e the intended
meaning. Tho compiler cannot enforc, the correctness of an~ user -defined Operation, and specifically not that of
& ‘ . Thus t t-’era is an additional verification condition on the definit ion of each 3:— to ensure the necessary

properti es.
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5.8.2 Examples

~ei~s f(x:int):reai
pre (abs(x)<maxlntreal};
Is fioat(x);

inline sel t riang(var  A:vector(?T,1,?n), i,j:int):T
isA (i’(i— 1)dlv 2.j]

proc empty Is as specified

5.8.3 Semantics

Selectors (declared sal) name objCctS. Procedures (declared proc) produce effects but do not
return values. Value-returning procedures (declared vproc), may produce effects and also return
values (actually objects). Functions (declared func) are semantically equivalent to vproc’s except that
they are deterministic1 ~ and do not have observable effects on their parameters. The <stmt) portion
of the <routine body) of a vproc or tune must be a single expression of the type returned by the
routine.

The qualifier Inline has no semantic effect, It IndIcates that the compiler should make the declared
routine ‘open” -- i.e., produce a copy of the object code at each invocation site.

The pie end post clauses have no semantic eflect, but are specifications of the routine’s behavior.
The pre ciause give, conditions which will be true at entry; !2~~ 

gives conditions at routine exit (the
keyword result is conventionally used in post conditions to specify the value raturned).

The routine body may be absent only In forni specifIcatIons (see 5.9). it may be given ‘as
specif led” only in form ImplementatIons; this indicates that the body Is to be carried down from the
specifications. The routine body may be specifIed as forward if Its declaratIon appears later in the
same <block>. The body may be specified as external it the text of the definition is to be found in the
system-dependent entity specified by <system spacs).

The formal parameter lists and result types must be omItted In form implementatIons if the same
routine (name) is declared In the specifications of the form. They are copied from the declaration of
the routine in the specifications,

The assumes clause (see Section 5.12) declares generic parameters (implicIt and explicit).
Throughout the text of the routine declaration, only those properties declared In the assumes clause
are used In testing Syntactic and semantIc valIdity.

As stated previously, Identifiers that name objects observe restricted Algol scope. Thus, the body of
a routine cannot access objects declared outside itseif unless they are passed through the parameter
list. Also, as stated previously, the objects named by distinct formal parameter names cannot overlap
unlCss they are explicitly qualified with alias.

~~ That is, invocations with equal inputs yield Cqusl outputs. l~ re prectety, f~r F to be s 
~~~ 

&—(A,3) must
imply &—(F(A)F(B)).’ If 3— is not defined, invocations with identical inputs must hive identical Outputs. 

-
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5.9. Form Declarations

Forms define classes of types. Ther, Is one form declaration for each base type. Ident ifie rs
declared in form declarations have normal Ngol scope.

5.9.1 Syntax

‘for m dad> :: <aux > 
~~~ 

Cidentifief>I<tOrmals>)’ spre><assumes> ~ <form body>
‘for m body> ::— (<specs~’} ’(<impi>)’ ~~

g ((identifier>)’ I <abbrev body> forward external
(‘system specs>) I ~ 

specified
<specs> ::— ~~~~~ { <var dcci> I <other form d~~ls> };

‘imp1> : :— 
~~~~~~ 

( <shared> <vs dad’ I <other form dedis>
‘other form decls’ ::— <routine deci’ I <form dacl~ I (axiom>I qhared> <const dad >
<shared> ::—
<axiom> ::— nv;riant <assertion> I initiellv <assertion) I i~i~m <assertion> reonia p

<assertion> I t~!i 
<4dantifier~ <assertion>

5.9.2 Exampies
form F(T:form. x:int) is

specs
var m:int;
vproc p(f:F):T pie {m<x} post (m)s};

impi
const *:as specified
var m:as !pecif led;
voroc p Is F.m:aF.x.1;

end -

5.9.3 Semantics

The ‘names defined in the specifications (<specs>) of a form are available outside the form
declaration. The scope of these names is the same as If they had been declared immediately outs Ide
the form, except that var and const declar ations becom e routine declarations as described below. The
scope of the names In the specIfications does not Include the implementation (<impl>). Note, however,
that all these names must be redeciared in the implementation. The implementation nay be omitted if
the form declaration appears as part of the specifications of another form. The specIfication may be
omitted if the declaration appears in the Implementation of another form, in which case it is copied from
the specificatIons of the containing form.

The scope of object names appearing in the formal parameter list of the form Is restricted to the
specs end <vOr dad s> of the <form body> unless they are expl icitly redecia red (as specifle e) in the
Impl. In the latter case a run-time representation of these objects becomes part of the implementation
of objects Instantiated from the form. In such cases It Is also poss ible for these names to be ment ioned
(again as specIfIed) in the specs, and hence to be externally available. These redeclarat lons In the
ImpI and specs must be compatible with the (binding) of the formal parameter; th at is, an Identifier
redeciared var must also havi a var <bInding) (an identifier redeciar d const may have a var. corlat, or
~~~~~~~~~ <bindIng>).

Objects declared In a form usually become the concrete components of the objects that result from
InstantIatIng the form; there are thus distInct instantlatlons of these objects for different Instantlatlons
of the form, an exception occurs when a declaration is prefixed by by the modIfier shared: A single 
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instantiation of a shared object Is common to eli instantiations of the form. In particular, It makes
perfect sense to define a shared con,t of a given type withIn the definition of that type. Such a
constant functions as a named literal of the type.

<Axlom)s have no semantic effact . but provid, further specIficatIons.

Non-shored constant and varIable declarations within form specIfIcations are shorthand for certain
procedure and selector declarations. That is,

form T...
specs...
var P:O
coost A:R

is short for
form T...

specs...
sel P(vor t:T):Q
func A(t:T ):R

In the implementation, object declarations aqain become selector and procedure declarations as
follows. When an object of base type I Is Instantiated, the object declarations In Its Implementation
are elaborated as usual (and the m i t  clauses are performed). This results In a set of newly created
objects which become the concrete components of the object being created. These components may
be accessed within the bodies of the routines in the Implementation by using Implicit selectors
(procedures) with the same names as those gIven in the object declarations. Thus, we can write

form T...
impl

var x:int;
Proc f(Q:T) Is ... Q.x

That Is, Inside f , “x” is treated as a selector on objects of type I and Is applied to the formal
parameter , 0, to access the x-component of the particular actual. Note in particular that “ x ” , like all

object names , obeys rest ricted Algol scope and hence is not inherited by the body of the E~ E’ f.

5.10. AbbrevIations

Abbrav lated form body definitions are provided for two commonly occurring kinds of abstractions,
“ records ” and ordered “ enumerated ” types.

5.10.1 Syntax

<abbrev body’ : <record type’ I <enumerated type’
‘record type> :: c1~E~ 

((<obj dad $roup’~,)<enumerated type’ ::— enumerated ( <identifier list> )

6 10.2 £xa mpias
record (re.im:real)
record (x,y:,nt, lo d:raal, theta ;radlana )
enumerated ( red , blue, green , purple . bardot ) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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5.10.3 Semantics

The declaration
form F(...) Is record (d1.d2 dk)

Is semantically equivalent to
form F(...) is

specs
yar d1 
func cons(d1 dk): PC...);
func &a(ihs,rhs:P): boolean;
vproc &:s( var ihs,rha:F): P(.,.);

yar d1 dk;
func cons Is

value v:F(...)
of note assign to comp onents of v eton fo

func &“ is note compare comp onents for equali ty ston
voroc 6:” Is note assign rlis to lha component-by-component eton

end P

In addition, all parameters of F are converted to “?Identlflers” when they appear In formal parameter
lists of ‘Cons”, “6””. or “ &: e” .

The deciaration
form C is enumerated (‘i 

Is semantically equivalent to
form C Is

specs
shared const i1, .., I~:C; I distinct Constants;
func 6. ... ; ! equality test
vproc &:e ...; ! assignment
func mm .. .; I minimum element (.li)
func max ... ; I maxImu m element (.i~)
func succ ...; I successor (not defined on i~)
func pred .. .; I predecessor (not defined on 1i)
func card ...; I cardlnallty of enumeration (un)
I’unc decode ..,; ! converts element to its ordinal (e,g., decode(l3).3)
func code .. .; I converts ordInal to element (e.g., code(2)s12)
tunc spell .. .; I convert element to stlIngi.t (Its prlntnam e)
func unspeIl ... ; I conve rt stri ngiet (printname) to element
generator gen .. .; I generates elements in order (1i ... I,,)

end C

5.11. Gsnsrators

Generators are specialized forms. They are useful for defining objects that wIll be bound to the
control variables of the for and first constructs (eec 4.7, 4.8). (Any form may provide such Objecta ,
but their use is suffIcIently constraIned by the languege that special abbreviated syntax is provided
for defin ing forms intended spec if ical ly for this purpose.)

-
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6.11.1 Syntax

<form deci’ :— <sux’ ,.onerptor <identifier> (<formals>)’ : <type description> ‘pie> <.ssum.s~
~ <form body’

6.1 1.2 Example
generator upto(Ib.ub:Int): m t  Is

specs
pre (ub�maxint-1 A lb�mlnint)
aux var k:intaub+1;
rule for

(premise l~k~u A I((i..k-1)) (SlOt)) I((Lk))
conci 1(o ) (for k from g: upto(l,u) do ST(k) 2~

) I((l..u]))
rule first

(premise P A I~k~u A (Yw)(i~w<Jc ~ -f~(w)) A ~
(
~(k) (31(k)) 0

premise P A (Yw)(t~w~u ~ ‘./J(w) (S2) a
concl P (fIrst k from g: upto(I,u) suchthat ~ (k) then 31(k) else S2 

~) 
0)

impl
var k: as specified;
const lb,up: as specified;
func &done Is g.k>g.ub;
sel &value Is g.lc;
proc &start Is g.k:”g.Ib;
proc &next is g.k.:.1;
proc &finish Is g.k:”g.ub.1;

endof upto

Note that in thIs example we have chosen to Ignore statement and predicate parameters other than k.

5.1 1.3 SemantIcs

in order to generate loop control var iables, a form must provide definitions for the routines &start,
&next, &done and &veiue. A definition of the routine &tlnish Is optlonai. If no dsflnltion is provIded for
& finIsh, the compiler wIll provIde (1) an appropriate header, (2) the body skip In the specificat ions, and
(3) the body as specified in the Implementation. Restrictions on the defin itions of &don e, &atart,
&next, &flnlsh, and &vaiue are provided In appendix C.

A distInguished class of forms definIng objects for controlling loops Is designated by the reserved
word generator and the syntax Indicated above. This class Is significant because the behavior of these
objects Is sufficiently constrained to be specified by a proof rule. Necesasry properties of the
specIfIcatIons of the generator routines can be derived from the proof rules and the constraints 1 . As

a result, these specifications are not written explicitly. Instead, proof rules foe first and for loops that
use the generator are written as shown above. An Instantiation of a generator may be used only to
control loop constructs for which it provIdes proof rules.

16 See “Abstraction and Verification in Alphard: Defining and Specifying Iteration and Ganerators” by Mary Show,
Wm. A. WuIf , and Ralph L London, in Commun4cagines of iW ACM, August 1977, pp. ~~3-~64.
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5.12. AssumptIons

Assumptions provide “ skeleton ” dectarat ions for gener ic parameters and provide suffIcient
information to verIfy all uses of these parameters locally

5.12.1 Syntax

<assume s> ::— (assumes <form dec1))~
’

5.12.2 Examples
assumes form I is specs func &‘(a,b:T):boolean

6.12.3 Semantics

Assum ed forms may not be parsmeter lzed and may not have Implementations. Identifiers appear ing In
the update sets of generic parameters must be specified In an assumes clause (see 5.0). Actual
parameters corresponding to generic forma ls must syntactically satisfy the assumptions about the
formal (see 2.4).

The following routine Illustrates the use of assumptions and generic parameter ,:
func equal vecto rs ( x ,y:vect or( ?T,?Ib,?ub)):boolean

assumes form T Is spec s func &‘(a,b:T):boolean end
is first I from upto(Ib,ub) suchthat x[i]s~y(l] then false els e true N

This routine well determine whether two vectors, x and y, are equal so long as (1) the type of the
elements of the vect ors, T, provides an equality operator and (2) the two vectors have the same upper
and lower bounds. An assumes declaration behaves as though It had normal Algol scope; In particular,
assumptions about generic parameters of a form need not be repeated wIthin routInes (or other ~~!)~~~declared within the form.

_ _ _
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Appendix A
Collect d Syntax

<letter> ::— A I 0 I. .. I Z a I ... I z
<digit> ::— 0 I I I ... 9
<alphanumeric’ :: <letter> I <digit> I
<special symbol> ::— <basic symbol> I ‘operator>
<basic symbol> ::— ~~~~ ~ ; 1 : 1 ( 1 )  $ 1 , 1  I & I

ii tb!D i !i. I cia I
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~gy. I •xitiooo I ~~~j I $lar.1 I

I I I UsoStified I - I I
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~22L~~I II2flI!Igij L I gi2L I~~!2~~~I~~b i i t l > I < I . I e I

I forward external I t~Qi I thEa I
invariant I initially J I reompo
t~ax~ I •nuin r~t.d as sumes I seneretor

<operator> ::— <binary operator> <unary operator>
‘tinsry operator> ::— t ( ’ I  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~<assign op’
<unary operator’ :. + -

‘identifier> : —  <letter , (<alphanumeric>)
<special identifier> :: &star t I &finish I &next &done I &value I &subscript I &‘cop.rator>
<identifier list> ::— <identifier>,

<special literal> :: <unsigned integer ) I <unsigned real> <string) I ‘boolean” I <radix>
<unsigned integer> ::— (<dig:t>r
<unsigned real> ::— <unsigned rstionsi>(E<scsie_l.ctor,)e I <unsigned integer’f<scaie-f actor>
<unsigned rational> :: <unsigned integer’.<unsigned integer>
‘scale-factor> :: (+I.}’cunsigned integer’
<string> ::— “<any secuencs of characters with all quciea ooubled’”
‘boo(ean> :: true I tals.
<radix> :: (<alphanumer,c~~~ rcalphanu.neric>

<compilation unit> :: 
~~~~ 

<block> g~~ ‘.xcc dad list>
<block> ~:— <.xac dcci Iist’i) (<stmt>}t (;)
‘.xec dccl list> ::— <exec deci> }i
<.xec dccl> ::— <var did> <const dcci> <proc dccl’ I <form dcci> <label dad >

<expr ession> :: <invocation> <conditional axpression> <value expreuion” I
<w,th expression> ) <first expression>

<stmt> ::— <express io n> ‘loop stint’ <exit st int ’ <null stint’ I
<inner block’ <labeled st int’ <assert stint’

<labeled st int> : —  <identifier> : <st int>

<invocation) ::— ‘special Iit•ral’ I qimpla invocation>(<actuals>J (<Invocation’)
<actuala> ::— ((<actual>), )
‘.ctual> <ispr ess iOf~’ I <type dascription’
‘simple invocation’ ::— (c ,dc nti f ier>$ )‘ <identifier > I <special identifier’
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<conditIonal expression’ ~ — ‘if expression> I <case expression’
<if express ion> ::- 

~j  <expression> 
~~~ <block> (g~ <expression’ ~~~ ‘bIock~’ * (g~~ ‘block~’}° fj<case expressi on> :. gggg ‘expressio n> g~ 

<case> (g~~ <case> )
~ 

(q~g~ bIeck> g~gç<case> :~~ (<expresaion>), <block>

<value expression> ::— 
~~~~ <identifiar’(riobj type>) ~ <block> ~

‘with expression> :: ~~~ with list> ~ (block><with list > ::— ( <idantifIer”slnvocafj~n’),

<first express ion> ::— jj~j~.<teinpIst. suchthat ‘express~n’ ( g~cblock>) (g)~~ (biock>) LI
ct•mplat•’ — <identifier> trim (“iden$ifier~ ) ’type description’ I <Ideritlfi.r j~g~ <invocation>

<loop st int> :~~ <s~mpie loop> I <while stmP I <for stint ’
<simple loop> :: ~~~ (block> gg
<while stint> ..— ~~~~j ‘expression’ <siinpl. loop>
‘for stint> ::— (

~ <template’ ‘simple loop>

‘exit st int> :;— •xitlooo I g~~j  <identifier>

‘null stint> ::

<inner block’ :~~ ~itn ‘block> g~~ I ~ii~a <blec*> {<$dsidifler’}

(assert stint> 
~~~~~~~~~ 

‘asaert ion>

<label dccl> :: L~~iL <idantif h r  list’

ver den> :— ceu,t> ~~~~ , (‘ob~ dedt groijp>(’nit fin
<come t decl> ~

. ‘sux’ ç~~~ {<dej dccl grou p’ (<ew t fin ciauae.)a I <comet assign>),’

<Obj dad group’ (idantifler list> : ‘daJ type)
<Obj type> :~~ ‘type description> ) ~ ~secifisd< m u  I in ctause’ ::~ • <expression> I (ij~g(stmP)a (fl ~~ (nt,,pJa
‘comet assign ’ ~

. (identifier list) - ‘expression’

<type description> :: ‘s*mple invocation> (( (<form al  QusI>),’) 
~ (<update sat”) I

‘<id.ntlfior)(’updst, set3)e
<formal 4uai> :: ‘expression> I ~<identiti.r (~updaIe set))’ I (<Idantlflpr~ )’ <type description> I

+<update set) 
~. ‘ ( <identifier’ I <special identifier’ }, ‘

<formals’ ;:— ( (<routIne formal) I <bsnding’<obj formal> I ‘type tormsi>)~~)(routine formal’ ::“ <formal id list’ <pare’ I ‘formal id list> tx~r~ I tti~~ I g~(}*v paring>
‘binding> :: ( c ~~ I I Lin) { c~~i I ~arJ )a
<formal Id lIst’ :0 <identifier list’ :
‘obj formal’ . <formal id list> ‘type description>
‘type formal> — <formal id list’ (~~~~ I 9t2~~ L tuod.Ia set’)’
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<routine dccl> ::~ <vproc dad > I <proc dccl> I <sal dad ><vproc dccl> ,

~~~ aux> ft~ j~gJ~ ~~~~ I (~~cJ<routine Id> <y parms’ <pr. post> <assumes>(‘routine body>J‘proc dccl> :0 <aux> (j~ j~~ * E~~ <routine id’ parms> <pra post> <assum es> (<routine body>)’<sal did > :: <aux’ (j~~n ggjcroutine id~Cv parms> <Pr. post> <assumes> (<routine body>)<routine id> 
~ ‘identifier> I <special identifier><parma> ::— (<for inals>Ja

<v parms> ::— ( formais.,Je-ctype description>
::— (~~ g <asairtion>~~‘pre pnst> ::— ‘pre’ (

~~iL <Jssertion) )*<rout ine body> :: 1 <stint> I ~ g~ soecified I ii foZ~!!~4 I jg external (<system specs>)
<term dccl> :0 <aux’ ~~~ <identi fi,r>(cf or mals>}e <prs><assumes> j

~ <form body)<form body> ::— (<specs’J’(<lmpl>)’ ~~ (<idanfifier>)~ I <abbrev body> I focward I external• (‘system specs>) I ~~ sOetified 
+‘specs> ::— 

~~~~~~ ( <vsr dccl> I <other form decls> )j 
+<impi> ::— ‘shared> <var dccl’ I ‘other form d.cSs> )~<other for,,, decls’ ::— <routine dccl> I <form dcci> ‘axiom>I ‘shared> ‘comet dcci><shared> 

~:—<axiom> :;— ~yj~’ianf <assertion> I ~Miplly <assertion, I ~~~ <assertion> I reomao
<assertion> I ~~~~ ‘identifier, ‘assertion>

<abbr ,v body > ::— <record type) I ‘enumerated type>‘record type> ::— 
~~~~~~ ((<obj dcci group>}, )

‘enumerated type’ — etiumerated ( <identifier list> )

‘form dccl> ::— <aims> s.nefatpr <identifier) (<fOr,fl~$>)a : <type description> <pre) <assumes>
~g <form body’

<assumes> :— (MI~~gg <form dccl>):
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Append ix B
Standard Prelude

The complete specIfications of the types in the standard prelude will appear in a future technical
report. This append ix prev iews that report by lIstIng the types to be Included and summa rtzlng their
main properties. This, together with the reader ’s experience and goodwill, should suff ice to understand
the language definition.

The type definitions loosely referred to as the “standard prelude” actually comprIs, three classes of
definitions. The primitive prelude det inea operationally the basic notion of lInear contiguous storage
end all of the common machIne operations . The standard prelud, proper includes types that we
expect to be Implemented for all v.rsions of the language , usually as a part of the complier. The
Implensentatlon prelude Includes types that provide facilities of the underlyIng hardware , oper atIng
systam . or suppo rt environment of a particu lar Implementation. In addition , types (such as resi) Which
should be defined for a large class of systems (but not all) are defined here. It is our intent ion that
whenever a particular Implementation chooses to def ine a type gIven here, It follows our specificat ions
to th. greatest extant possible.

5.1. Pr$mötiv. Prelude

The Raw3torage form supplIes the fundamental abstractIon of linear contIguous storage as
described in Chapter 1. retch ing and storing are def ined for Raw.Storsga objects of equal length. The
Integer and bltwlse boo lean operation s are provided for RawSfom age objects of length one. In addition
we provide support here for the subsequent definition of forms such as collections and references, as
well as the ability to do storage management

B.2. Standard Prelude

These types were chosen far their simplicity and common utility. They are Intended to provIde only
primitive tecilitles that may reasonabiy be expected to appesv (end be ethciently Imptementablo) on all
systems. The reader must bear In mind that these specifications were selected with the understanding
that they become essentlaily required of all implementations. When In doubt, therefore, we have
tcnded to exclude features rather than to Include them.

There are thres major classes of types in The standard prelude. The sect ions below sketch the
major properties of each.

L2. 1 Scalars

Th. scaler types of the standard prelude are looSean and Integer. Ilterais of these types are
detln•d in section 3.5.

Boolean Is the other form required by the language definition (Chapter 1). Objects of type Booløan
are unstructured; thq~, possess values from a set des ignated (true, false ). The customary unery and
binary functions are provided, along with assignment.
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Integers are restricted to machIne precision. The standard prelude supports the customary unary
and binary arlthm~tIc operators on Integers, the arithmetIc relations , named const ants to describ e the
finite range at a partIcuLar Implem*ntation, assignment, and transfer functions to and from Strlnglets.

0.2.2 Unear Structures

Two linear, homogeneous, fixed-length data structures are provided In the standard prelude.
Vectors may have elements of many types; .Strlnglets are minimally sufficient to support I/O
operations.

Vectors may have elements of almost any type (the type must be allocatab ie withou t special
restrictions). Any partIcular Vector , of course, contains elements of only one type. The length of a
Vector Is fixed at instantiatIon time. A subscript selector for Integer IndIces and a generator that
produces the elements in order are provided. If the element type supports either assignment or
equality test, that operatiort is extended to the entire V ctor. There is a silca routine which returns a
subvector of the original vector (with the new origin forced to zero).

.StrlngI.ts closely resemble vectors of charactCrs. The same operatIons are provided for Strlnglsfs
as for V ctors. In addItion, ilterils are supported by the syntax of section 3.5 end an assortment of
special predIcates on .Strlnglets of length 1 is provided (IsCharacter, laLetter, IsDIgIt, etc.). Tram,sf er
funct ions to and from Integers are else provided. Note that type “ character ” Ia not Inciud.d In the
standard prelude; use Strlnglets of length 1 instead.

B.3. ImplementatIon Prelude

CertaIn othe r types appear In some fashion in almost every language. These types do not have
uniform specifications across implementations. Out rather depend on the host machine. SInce we don’t
went to require these for all systems, we cannot Include them in the standard prelude. instead , such

types are provIded In an Implemaotation prelude -- a segment of the defInIt ion of each Implementat ion
that Is frankly machine-dependent, in addition , certain types whIch may riot exist under all
ImplementatIons , but which must have uniform specificatIons for those systems on which they do Sxlst,
er~ Included here.

The ty pes defined here may provide direct access to features of the underlying hardware ; they may
support special facilIties of the environment or the operat ing system; they may simply be data types
that are best supported dIrectly by the compiler.

0.3.1 Scalers

Reals have the properties of hardware floating-point values. Unary and binary arithmetic operators
and relations are sup ported to the extent that the underlying machine allows. Constants describing
floatIng point accuracy, assignment, and trsnsfer functions to and from Integers and Str ingl et. are
also prov ided. There is NO mixed-mod. anthestlc.
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0.3.2 Input and Output

The implementation prelude requires a minimal sat of operations on tIles of characters. ThIs, together
with transfer funct ions to and from StringisEs, is intended to guarantee the availability of at least
primitIve input/output facilities. it Is Intended that each Implementation prelude provide such richer
support as Is appropr iate, provIded such support Is an upward compat ible extens ion of the faci lit ies
described here.

Form lOP lie supports sequentIal flies of charactar s. Piles are sequen ces of stringlets of length
one. They are constructed by appending Stringlets and decomposed into Strlnglets. The available
operations are commands to open or close an Pile for reading or writing, to test the status Of an Pile,
and to read or write a .Strlngl.t from or to an Pile. Note that file Is an auxllli ary form definItIon--such
objects cannot be declared. IOFII., on the other hand, has a null representatIon. Hence it is not
meaningful to declare objects of this type.

B.3.3 Machine Dependent Types

These types may provide dIrect access to features of the underlying hardware ci’ to special facilities
of the environment or the operatIng system.
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Appendix C
Special identifie r Assumptions

A certain number of Alphard routInes are used for special purposes. TheIr definitions are thue more
constrained than has been IndIcat ed elsewhere In this report. These rout ines are distinguished In that
their names begin with ampersand (N&*); syntactically, they are <special ldentlfler>s. The routines are
Invo ked by specific language constructs rather than by ordinary routine invocation.

These routines are grouped Into two classes. Generator routines are Invoked by the for and first
Iteration constructs In the manner described in sections 4.7 and 4.8. Extensible operators are
aff ected by the Infix operator rewrite rules as wail as by the subscript rewrite rule (see section 3.4).
Extensible operators include all operators named by <special identlf ler)s other than generator rou tines;
they can be overloaded by user-defIned forms.

C. 1. Generator routines

Inc generator routin es are &done, &start, &next, ~flnish and &va lue.

C.1.1 Use restrictions

The restrictions on the Invocation of generator routines as an ordinary routines are Intended -to
support two conflicting requirements. First, it Is mandato ry that a for or first loop body not be able to
use these functions on the abject generatIng the loop control var iable. It is. In general, desirable that
they not be invoked In other arbitrary places outside of loops either. It Is , how .ver , useful to be able
to use these routines In the definitions of other generators , specifically thos e which sImultaneously
generate elements of two or more data structures.

The InvocatIon restriction Is thus that: &start, &nex t and &flnlsh can only be invoked in the definition
of an &start. &next or &tlnIsh routine of another generator ; &done can only be invoked In the definition
of an &start , &next, &flnish or &done routine In another generator; &vs lue can only be Invoked within
another generator. This would seem to permit use of the same generator abject to create control
variables In two nested loops. Any problems which this might cause for the generator object would be
detected as violatIons of sufficient Independence of the object from the body of the outer loop.

C.i.2 DefinItion restrictIons

Suppos e a generator named gan defin es a type of object that prov ides a control variable of type t
for the “< IdentifIer ) from ” construct. The generator routInes must have header specificat ions
subsumIng:

func &done(g:gen):booi;
sal &value(g :gen):t;
proc &start(g:gen);
proc &next(g :gen) ;
proc &ti niah(g:gen);

L
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C.2. Extensible routines

The extensible routines are 1,,, &“, &I, &dIv, &rsm, &.(unary and bInary), &-(unery and binary), 1<,
&a, &) , &and, &or, &imp, &not, &:“ and &subscript.

C.2.i Use restrictions

Extensible routines can be Invoked either by using the InfIx operator rewr ite rule or by using the
subscri pt rewrite rule (see 3.4). There Is no loss of generali ty In prohIbIting their Invocation as ordInary
routines.

c.2.2 DefinitIon restrictions

WIthin form f, specificat ions of these operators must subsume:
tunc &t(leftparm:f .rlghtparm:t):tl;
func &“(leftparm,rlghtparm:f):f;
func &/(leftparm,rlghtp.rm:f):f;
tunc &dlv(l.ftparm,rlghtparm:f):t;
func &rem( ieftp arin ,rIghtpar m:f ):t;
func &.(leftparm ,rlghtparm :f):f;
tuna &+(par m:f) :f;
tuna &-(laftparm,rlghtparm:f):f;
func &-(perin:f):f;
func &<(Ieftparm,rightparm:f):bool ;
func &a(Ieftparm,rigfltparm:t);bool;
func &)(lettparm,rightparm:t):bool;
vproc &:a(allaa var leftparni :t , silas rlghtparin:f):f;
sd &subsarlpt(atterdot:f.pl :tl,.. ,pn:tn):t;

The complier Is able to enforce only the precedence and syntax of these operators. However , theIr
traditional use in mathematics raises other expectat ions about them; most people, for example,
presume “.“ Is at least associative and possibly commutative. We strongly urge that the programmer
overl oad these operators only with operations that preserve those expectations; failure to observe
this convention may badly mislead the reader.

— -~~~~ -~~~~~~~~~~ - ~~~~- -~~~-~~-~- —--
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AppendIx 0
A Complete Example

We now present a complete Alphard program. This program defines finite sets with a fixed maximum
size , then uses them In a small program. Several aspects of the program deserve special note.

Form FinSet defines one variety of sets. These sets must be homogeneous (I.e., all elements must be
of the same type), but the elements may be of any type that provides assIgnment and equality
operators. Thus FinSet is a generic type definition. The specIficatIons of FinSet are stated In terms of
ordinary mathematical sets; the restrictions that apply to sets of type FinSet are explIcIt.

We assume the types of the stanaard preiude, AppendIx B. In part icular , we usa vectors, integers,
and the generator upto for integers. The main program defines an ordered enumerated t~P5 and uses
the generator that Is automatIcally defined for such a type.

The names V and m used in the implementatIon of FinSet are available to the bodIes of the routines
defined In that form. V and m may be used as qualifiers on any objects of type FinSet that those
routines receive as parameters. The names V and m are not available outsIde the for m.

FinSet defines routInes &+(union), &“(lntersect). &:.(asslgn), and &.(equallty). These extend the
definitions of the binary Infix operators +, , s and • to pairs of FlnSets. The FinSet ImplementatIon
also takes advantage of the rewrite rule fo r.’  and . s .

Assertions are included in the specificatIons of the FinSet operators. (We use prtme” notation in
post conditIons: 5’ is the value that S had on entry to the procedure.) Some have also been Included In
the main program to explain the operation of the program.

Three kinds of loops are used. Routines Insert, Remove, and Has all us. first loops to search for
elements. Insert defaults the then part and Remove defaults the else part. Plate that the equali ty test
In the suchthat clauses of these loops uses the equality defined for Eltlype. As a result, the code for
these routines may depend on the definition of the type passed as an Instantiation paramet er to
PinSet. The main program declares three sets -- one is a set of colors and the other two are sets of
sets (of colors ). The program uses for loops with the generator color$g.n on colors. It also uses a
conventional while.

The ‘S’ name ciualiflcatlon Is used for names colcr$card and colo r$gan . These are constants defined
for the ordered enumerated type color (number of elements and a standard generator , r~epectlvely).
They are associated with the type rather than with any va riable of the type. The qualification is used
to distinguish ord and gen from the corresponding defInitions associated with other enumerated types.

- - - -
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begin

~~~~ FinS.t tEl tT~jp.: ~C5c8z~ ,&. .,IlaxSlzez integer )
ar_i I MaxSize ~ B I
i~i 

soec.
au~ var F9:Mothematica l9et ( EItT ~pe)
i nvari ant I cardinalit i~(FS) ~ flaxSiza I
i n l t iallu I FS.I I

~~~~ Insert(~~~,SsFinSet, as E I t T~pe) g
~~ 

I card1nailt~ ( (x1 U S.F$) ~ S.Ma~Size I
g
~~
j  I S.FS-S.FS’ U (sa l

~ca~ 
Remove(var SsFinSet ,sa:Eltt ypei gg~j I S.FS — S.FS’ — (*1 I

voroc Choose (SsFinset) :Eltlype g~~ I S.FS • I i I
ggjj I resuLt c S.FS

~~~~ 
Has(S;FinSet ,x:Eit lype)sboolean ggjj I resutt • sacS .FS I

1~~~ 
&4. (R,S;FinSet):Fin,et g~~ I cardinaIlt~ (R.FS U S.FS) ~ R.llasaSi ze I

g~~
j I resul t • R.FS’ U S.FS’ I

.ti~i~~ 
&*(R.S:FinSet);FinSet gg~j I result • R.FS’ fl S.FS’ Ivcroc £:.(~~~ R,S:FinSet)sFin5at ggjj I result • R.FS • S.FS’ I

~~~~ &—IR ,S:FinSet):boolesn g~~
j I result • (R.FS’ — S.FS’) I

~~~~~~~~ Enp t~Set(EI.t~pe:~~~~,haxSizes int.ger)sFinSetIElt~pa,flaxSlz.)
ggj~ I resu lt — I I I

i!gi
~~~ V:vector (EItT 1,~pa,j.MasaSize), a: integer ~~~ .s— ~conat MaxSize: ~~ ,Dec~f ied;
reonag I F$ • lV (i1 I 1~ i~ a} Ii nvar i ant i(B~a~f1axS;ze) n (Yi .jcI1..a3 (V( ]V (j]~~i.j)) I
g~g~ Insert

i_a LLcit p L~ a upto (1,S..) auchthat S.V(p~ax
~j~j S.. .1- 1; 5.V(5,a3~

.g jj
~~~~ Reisove

La !.Lri.i p j  upto (1.S..) •uchthat S .V(p3 .at
.~~tn S.V(pi :.S.V(S..i s ~.c —I- 1 jj,

voroc Choose La S.V (1J
1.~ILi~ Has.La LLcii.. p ic.2a uptoll,S.a) sucPsthat S.V ( p I.sa

~~~ true LLU fa lse LL

La ~~j11jj T:Finsst(R.EltType,R.MaxSiza) gj1., :— R u
.L2~ J ±r.ga ~~g(1,R..) da T .V ( 1] — R,V (j J  gg

.tgr. I l.t.aa upto(L,S..)~a InaerttT ,S.YIj 3 )~~
12

Li~cia 1*
La ~LL~li T:Finset(R .EltTwpe,R.ilaxSizu) gj

~~~~ 
j ~~,~~~upto(1.R.a) g~~j .~~Has(S,R.V (J I I

~~~~~~~~ Inaart(T ,R.V ( J J ) .IJ. gg

La
____ Li-

ii ~~~~~~~ 
R aL R .a s- S.., fg~ I •f~g~ upt o(1 ,S.a ) ~~ R.V ( I) s. S.VW Q~ 1.2

_ _ _ _  - — - - —~~—---- --~~~~~-
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La R.m — S .m ~~~g ~j ,~1j i 
~~~~ 

upto (1 ,R ,a) sucPs tp,at ~gj Hae (S,R .V (IJ )
~~~ fals e tin true ~j.f~Da Eapt~Set

La at a&ia La

I Com put e powerset of snu.er•ted type
!.ar.~ color i_ ~ 

enumerated (red,or ange,uelloaa ,gre.n,blue.vioI.tI ~~~gvar Co l orSet: FinSe t (FinSet(cglor ,00lor$card), 2?caior$c.rd)
aa,ert I Co l orSet - I I I
Inser t (Co iorSet , EmptUSet (FinS. t (Calar , colorlcard)))
sssq~~ I ColorSe t - I I I I I
LQC. C ~~~~ ~oIor $g.r~ ~~

~~~ Tamp; Fir,Se t (FinSetfcofor ,coiorScardl , 2~coIor$cardl
T..p :- Co lorSet
wh i l e  Temp • EsptVSet(FinSet(color.color$csrd) ) ~~

~~~ Currants FinSet (color ,colo r$card)
Remove (Temp . Current: -Choose (lemp) )
Ineert (Cur rent , c ) ; Inser t (Col o rSet ,Cur r.nt)

asser t I ColorSe t — I S I S ~ lxix is a value of tijpe ColorS.tI ) I 

-~~ ~~~~~~~~~~~~~~~~~~~~~~~~ 
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Appendix £
- Proof Rules

• Proof Rules Omitted Prom Preliminary Version


